

Information Security and Cryptography
Texts and Monographs

Series Editor
Ueli Maurer

Associate Editors
Martin Abadi

Ross Anderson
Mihir Bellare

Oded Goldreich
Tatsuaki Okamoto
Paul van Oorschot

Birgit Pfitzmann
Aviel D. Rubin
Jacques Stern

Giampaolo Bella

Formal Correctness
of Security Protocols
With 62 Figures and 4 Tables

Author Series Editor

Giampaolo Bella
Università di Catania
Dipartimento di Matematica

Viale Andrea Doria 6

giamp@dmi.unict.it

Library of Congress Control Number: 2007921678

ACM Computing Classification: C.2.2, D.2.4, D.3.1, F.3.1, F.4.1, I.2.3

ISBN-13 978-3-540-68134-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Integra, India

Printed on acid-free paper SPIN: 11818311

95125 Catania, Italy

Ueli Maurer
Inst. für Theoretische Informatik
ETH Zürich, 8092 Zürich
Switzerland

ISSN 1619-7100

45/3100/Integra 5 4 3 2 1 0

Cover design: KünkelLopka, Heidelberg

e Informatica

To the loving memory of my father, Carmelo,
whose death helped me broaden my views of life.

To my mother, Agata,
whose loss of eyesight helped me bring those views
to a focus.

Foreword

This book describes a key technique, the Inductive Method, for proving the
correctness of security protocols. It is clearly written, starting with the basic
concepts of cryptography and leading to advanced matters such as smartcards
and non-repudiation. The book is also comprehensive and timely, with some
of the cited papers still in their journal’s publishing queues.

Security protocols are short message exchanges designed to protect sensi-
tive information from being stolen or altered. Mobile phones, Internet shop-
ping sites and subscription television boxes all rely on them. Even with good
cryptography, security protocols are subject to many types of attack. Perhaps
a hacker can combine pieces of old messages to create what appears to be
a valid response to a challenge. The danger is greater if the participants in
the transaction can be expected to cheat, as with many Internet purchases.
Because the number of possible attacks is infinite, the only way we can be
sure that a protocol is correct is by mathematical proof.

Researchers have been attempting to prove the correctness of various com-
puter system components since the 1970s. Hardware can be verified to a great
extent using logic-based tools such as binary decision diagrams (BDDs) and
model checkers. Software seems much more resistant to verification; recent
celebrated work using SAT solvers can only prove very simple properties. Se-
curity protocols are software; to be precise, they are concurrent algorithms
based on cryptographic operations. Unusually, these algorithms include a
threat model: one process is assumed to be an enemy with wide powers to
capture and combine other people’s messages.

Given these complicating factors, it is unsurprising that protocol verifi-
cation became a long-standing open problem in computer security. As late
as 1995, the problem appeared to be intractable. Today, however, security
protocols can be verified automatically using a number of freely available
tools. Though many side issues remain, the core problem must be regarded
as solved. Many people can take credit for this remarkable success. In partic-
ular, Oxford’s Security Research Group pioneered the use of model checkers
to analyse protocols [142]. Their work has been widely copied.

However, model checkers do not prove properties: they search a finite
space for possible flaws. Being automatic, they are excellent for debugging,
but the failure to find a bug does not mean that none exist. The Inductive

Method described in the present volume takes some ideas from the Oxford
group, such as their message primitives, and applies them in the context of
proof. Industrial-grade protocols such as SSL/TLS, Kerberos and even the
huge SET protocol suite [37] can then be tackled. Although these proofs are
far from automatic, the effort needed to undertake them is considerably less
than that required to design the protocol in the first place. Merely to derive
an abstract protocol from the standards documents can take weeks, a task
that automatic tools cannot escape.

Giampaolo Bella is amply qualified to write this book. He has been in-
volved with the Inductive Method almost from its inception. He has worked
to extend its scope, for example to smartcards, and to refine the types of prop-
erties it can express. These efforts also illustrate why the Inductive Method is
still valuable in the era of off-the-shelf protocol verifiers. It can help explain
how these verifiers work: some of them are based on formal models similar
to those described in this book. Besides, off-the-shelf tools inherently have a
limited scope: they are designed to solve problems of a particular sort. Bella
has shown that the Inductive Method can easily be extended to new security
environments, which can then be studied formally. Such work enables the de-
velopment of a new generation of automatic tools, and so the field progresses.

Cambridge, February 2006 Lawrence C. Paulson

VIII Foreword

Preface

The era of computer networks has nowadays surpassed the era of computers.
It is widely realised that computer networks ought to be secure for innumer-
able reasons, ranging from prevention of frauds to accountability of actions.
For the sake of security, the network participants must take predefined steps
called security protocols. This book treats proofs of correctness of realistic se-
curity protocols. A formal though intuitive setting underlies all proofs, which
the reader can inspect to be convinced of their validity. A proof is nothing
but evidence that each protocol step preserves a desired property.

This book is the result of approximately ten years of my research, started
back in late 1996. I was beginning my Ph.D. at the Cambridge Univer-
sity Computer Laboratory from some of my supervisor’s newborn ideas on
analysing security protocols using simple induction. Larry Paulson called his
inductive techniques the “Inductive Method.” As inventor of the theorem
prover “Isabelle,” he was probably most interested in the underlying proof
aspects, whereas I soon turned my interests to the actual security issues. With
his support, I have devoted these years to making the Inductive Method ma-
ture for real-world protocols.

My Ph.D. thesis [23] firmly underlies these pages. I have added four new
chapters to it and rewritten the rest, so this manuscript is entirely new.
Writing in English was a big endeavour for an Italian mostly living in Italy,
but my international friends reassure me that the outcome is readable — after
all, they are friends indeed! I am confident that this book is a valid help to
understand the entangled niceties of security protocols and their verification,
for both teaching and research purposes.

In terms of verification, the reader will learn how to inductively deal
with general protocol features such as timestamps, message reception, agents’
knowledge, smartcards, non-repudiation, certified e-mail, and other advanced
goals. In terms of actual protocols, several designs will be taken apart to
the last message brick, including BAN Kerberos, Kerberos IV, Kerberos V, a
smartcard protocol by Shoup and Rubin, a non-repudiation protocol by Zhou
and Gollmann, and a certified e-mail protocol by Abadi et al. Transversal
competence concerns the theorem prover Isabelle, which offers the necessary
mechanical support, and the principles of prudence underlying robust proto-

cols. I advance and demonstrate “goal availability,” a principle directly aimed
at guiding protocol analyses and ultimately at designing correct protocols.

Acknowledgements

I am extremely grateful to Larry Paulson for the perfect mix of knowledge,
experience, and patience with which he supervised my Ph.D. research. My
gratitude goes to my Ph.D. examiners, Mike Gordon and Peter Ryan, for
their constructive criticism. Special thanks are due to Margaret Levitt, ad-
ministrative secretary of the Cambridge University Computer Laboratory,
for her bureaucratic assistance, and to Lewis Tiffany, former librarian of the
Laboratory, for making the library a friendly environment.

I would also like to thank many colleagues. Colin Boyd offered construc-
tive criticism to my goal availability principle; Dieter Gollmann clarified the
relation between integrity and authenticity; Peter Honeyman unveiled a few
technicalities of the Shoup-Rubin protocol; Gavin Lowe facilitated my un-
derstanding of authentication; Markus Kuhn illustrated many weaknesses of
smartcards; and David Richerby proofread my thesis.

My gratitude also goes to all professors of the University of Catania,
who welcomed me back after I got my Cambridge degree. I especially re-
call Domenico Cantone, for quickly acknowledging my security competences;
Giovanni Gallo, for supervising my undergraduate final dissertation; Alfredo
Ferro, for initially encouraging me to go to Cambridge; Elvinia Riccobene for
transforming my initial impetus towards research into expertise; and Salva-
tore Riccobene, for solving many equipment problems.

My friends have played a major role throughout these years. Marco Au-
risicchio, Valeria Baiamonte and Giovanni Farinella offered me a familiar at-
mosphere in the summer of 2005 in Cambridge, when Pietro Liò was an en-
tertaining office mate; Stefano Bistarelli encouraged me to publish this book;
Francesco Cassaniti has been a painstaking supporter; Cetty Di Maria and
Daniela Pettinato have always believed in me; Dario Greco has been a great
hardware consultant; Sandro Politi has constantly been a brother; Angelo
Rovito has been an assiduous self-confidence reminder; much of my English
proficiency is due to Alain Wolf’s patience; Ilenia Tinnirello and her group at
the University of Palermo warmly hosted me for a month. Erina Cocuzza was
the person whom I was happiest to tell that this book would be published.

Sono profondamente grato a Zio Tanino, Zia Nerina e in particolare a
mio fratello Giuseppe per aver riempito la mia assenza da casa con perizia e
vitalità. Senza di loro non avrei potuto accettare di vivere all’estero.

Questo libro è dedicato al mio papà, Carmelo, la cui morte mi ha aiutato
ad ampliare la mia visione della vita.

Questo libro è dedicato alla mia mamma, Agata, la cui perdita della vista
mi ha aiutato a mettere a fuoco quella mia visione.

Catania, February 2006 Giampaolo Bella

X Preface

Contents

1. Introduction . 1
1.1 Motivation . 4

1.1.1 Developing the Inductive Method 4
1.1.2 Verifying the Protocol Goals . 5
1.1.3 Investigating the Protocol Principles 6

1.2 Contribution . 6
1.2.1 Inductive Method . 6
1.2.2 Protocol Goals . 8
1.2.3 Protocol Principles . 9

1.3 Notation . 10
1.3.1 Presenting the Protocols . 10
1.3.2 Naming the Theorems . 12
1.3.3 Wording the Symbols . 13

1.4 Contents Outline . 14

2. The Analysis of Security Protocols . 17
2.1 Formal Approaches . 18

2.1.1 Abstract State Machines . 18
2.1.2 Belief Logics . 19
2.1.3 Constraint Programming . 20
2.1.4 Provable Security . 21
2.1.5 Spi-calculus . 22
2.1.6 State Enumeration . 23
2.1.7 Strand Spaces . 24

2.2 Interpreting the Findings . 25
2.2.1 TMN . 25
2.2.2 Woo-Lam . 26
2.2.3 Public-key Needham-Schroeder . 27
2.2.4 Shared-key Needham-Schroeder . 28

3. The Inductive Method . 31
3.1 Isabelle . 32
3.2 Theory Hierarchy . 33
3.3 Agents . 36

XII Contents

3.4 Cryptographic Keys . 36
3.5 Compromised Agents . 37
3.6 Messages . 38
3.7 Events . 38
3.8 Traces . 39
3.9 Threat Model . 40
3.10 Operators . 43
3.11 Protocol Model . 45

4. Verifying the Protocol Goals . 49
4.1 The Reliability of the Protocol Model . 50
4.2 Regularity . 52
4.3 Authenticity . 53
4.4 Unicity . 54
4.5 Confidentiality . 56
4.6 Authentication . 58
4.7 Key Distribution . 60

5. The Principle of Goal Availability . 63
5.1 The Need for a Threat Model . 64
5.2 Goal Availability . 65
5.3 Past Incarnations of Goal Availability . 68
5.4 Anticipating the Applications of Goal Availability 69

6. Modelling Timestamping and Verifying a Classical Protocol 73
6.1 Modelling Guessable Numbers . 74
6.2 Modelling Time . 75
6.3 The BAN Kerberos Protocol . 76
6.4 Modelling BAN Kerberos . 77
6.5 Verifying BAN Kerberos . 79

6.5.1 Reliability of the BAN Kerberos Model 79
6.5.2 Regularity . 80
6.5.3 Authenticity . 80
6.5.4 Unicity . 81
6.5.5 Confidentiality . 82
6.5.6 Authentication . 83
6.5.7 Key Distribution . 84

6.6 A Temporal Modelling of Accidents . 84

7. Verifying a Deployed Protocol . 87
7.1 The Kerberos IV Protocol . 88

7.1.1 Overview . 89
7.1.2 Details . 89

7.2 Modelling Kerberos IV . 91
7.2.1 Basics . 92

Contents XIII

7.2.2 Authentication Phase . 92
7.2.3 Authorisation Phase . 92
7.2.4 Service Phase . 93
7.2.5 Accidents . 93

7.3 Verifying Kerberos IV . 94
7.3.1 Reliability of the Kerberos IV Model 96
7.3.2 Regularity . 97
7.3.3 Authenticity . 98
7.3.4 Unicity . 100
7.3.5 Confidentiality . 100
7.3.6 Authentication . 106
7.3.7 Key Distribution . 109

8. Modelling Agents’ Knowledge of Messages 111
8.1 Agents’ Knowledge via Trace Inspection 112

8.1.1 Basic Lemmas . 113
8.1.2 Proving Knowledge . 113

8.2 Agents’ Knowledge via Message Reception 114
8.2.1 From Spy’s Knowledge to Agents’ Knowledge 115
8.2.2 Updating the Existing Models . 116
8.2.3 Basic Lemmas . 118
8.2.4 Updating the Existing Theorems 118
8.2.5 Proving Knowledge . 119

8.3 Revisiting the Guarantees on BAN Kerberos 119
8.3.1 Using Trace Inspection . 120
8.3.2 Using Message Reception . 122

8.4 Revisiting the Guarantees on Kerberos IV 124
8.4.1 Using Trace Inspection . 124
8.4.2 Using Message Reception . 126

8.5 Comparing the Two Approaches . 130
8.5.1 On Otway-Rees and Otway-Rees-Bella 131
8.5.2 On Public-key Protocols . 134

8.6 Timestamps Versus Nonces on the Same Design 135
8.6.1 Informal Account . 135
8.6.2 Formal Account . 136

9. Verifying Another Deployed Protocol . 139
9.1 The Kerberos V Protocol . 140
9.2 Modelling Kerberos V . 140
9.3 Verifying Kerberos V . 143

9.3.1 Main Guarantees . 143
9.3.2 Novel Proof Methods . 144
9.3.3 Novel Guarantees . 148

XIV Contents

10. Modelling Smartcards . 153
10.1 Smartcards . 154

10.1.1 Card Vulnerabilities . 155
10.1.2 Card Usability . 156
10.1.3 Card Secrets . 157

10.2 Events . 158
10.3 Agents’ Knowledge . 159
10.4 Threat Model . 162
10.5 Protocol Model . 163

11. Verifying a Smartcard Protocol . 165
11.1 The Shoup-Rubin Protocol . 166
11.2 Modelling Shoup-Rubin . 167

11.2.1 Basics . 169
11.2.2 Phase I . 169
11.2.3 Phase II . 170
11.2.4 Phase III . 170
11.2.5 Phase IV . 171
11.2.6 Phase V . 172
11.2.7 Phase VI . 172
11.2.8 Phase VII . 173
11.2.9 Threats . 173
11.2.10 Accidents . 174

11.3 Verifying Shoup-Rubin . 175
11.3.1 Reliability of the Shoup-Rubin Model 176
11.3.2 Regularity . 180
11.3.3 Authenticity . 180
11.3.4 Unicity . 184
11.3.5 Confidentiality . 185
11.3.6 Authentication . 188
11.3.7 Key Distribution . 189

11.4 Verifying Shoup-Rubin-Bella . 190

12. Modelling Accountability . 195
12.1 Challenges for Formal Analysis . 196

12.1.1 Formalising and Verifying the Novel Goals 196
12.1.2 Challenges from Higher-Level Protocols 197

12.2 Facing the Challenges . 200
12.2.1 Formalising and Verifying the Novel Goals 200
12.2.2 Formalising the Underlying Protocols 202
12.2.3 Formalising a Threat Model . 205

Contents XV

13. Verifying Two Accountability Protocols 207
13.1 The Non-repudiation Protocol . 208

13.1.1 Model . 209
13.1.2 Verification . 210

13.2 The Certified E-mail Protocol . 215
13.2.1 Model . 217
13.2.2 Verification . 218

13.3 Discussion . 222

14. Conclusions . 225
14.1 Statistics . 229

14.1.1 Theory File Sizes . 229
14.1.2 Proof Runtimes . 230
14.1.3 Human Effort . 232

A. Proof Script Fragments for Kerberos IV 235
A.1 Reliability . 235
A.2 Session-key Compromise . 237
A.3 Session-key Confidentiality . 239

B. Proof Script Fragments for Kerberos V 245
B.1 Unicity . 245
B.2 Unicity Relying on Timestamps . 246
B.3 Key Distribution and Non-injective Agreement 249

C. Proof Script Fragments for Shoup-Rubin 253
C.1 Function “initState” . 253
C.2 Function “knows” . 254
C.3 Authentication . 255

D. Proof Script Fragments for Zhou-Gollmann 259
D.1 Validity of Main Evidence . 259
D.2 Validity of Subsidiary Evidence . 260
D.3 Fairness . 262

Bibliography . 265..

List of Figures

1.1 Example protocol . 11

2.1 TMN protocol . 25
2.2 Authentication attack on TMN protocol: CSP notation 26
2.3 Woo-Lam protocol . 26
2.4 Authentication attack on Woo-Lam protocol 27
2.5 Public-key Needham-Schroeder protocol . 28
2.6 Shared-key Needham-Schroeder protocol . 28

3.1 Fragment of Isabelle theory hierarchy that is relevant to this book 35
3.2 Example trace . 39
3.3 Example protocol and corresponding inductive model 46
3.4 Example trace belonging to the inductive model of the example

protocol . 48

4.1 Proving ticket authenticity without ticket integrity for shared-key
Needham-Schroeder: failed . 54

4.2 Shared-key Needham-Schroeder protocol: fragment 61

5.1 Another example protocol . 66

6.1 BAN Kerberos protocol . 76
6.2 Inductive model of BAN Kerberos . 78

7.1 Kerberos IV layout . 88
7.2 Kerberos IV protocol . 90
7.3 Inductive model of Kerberos IV: basics . 92
7.4 Inductive model of Kerberos IV: authentication phase 93
7.5 Inductive model of Kerberos IV: authorisation phase 94
7.6 Inductive model of Kerberos IV: service phase 95
7.7 Inductive model of Kerberos IV: accidents . 95

8.1 Rule template for message reception . 116
8.2 Inductive model, updated with message reception, of BAN Ker-

beros: fragment . 117
8.3 Proving an Issues property for BAN Kerberos 120

XVIII List of Figures

8.4 Otway-Rees protocol . 131
8.5 Key distribution attack on Otway-Rees . 132
8.6 Otway-Rees-Bella protocol: fragment . 132
8.7 Shared-key Needham-Schroeder protocol: fragment 135
8.8 Yahalom protocol . 138

9.1 Kerberos V protocol . 141
9.2 Inductive model of Kerberos V: fragment . 142
9.3 Proving an Issues property for Kerberos V . 146
9.4 Example trace belonging to the inductive model of Kerberos V . . . 147
9.5 Proving a novel unicity property for Kerberos V 150

10.1 Rule template for Spy’s illegal behaviour in the case of insecure means 162
10.2 Rule template for Spy’s illegal behaviour in the case of secure means 163
10.3 Rule templates for each card output in the case of secure means . . 163
10.4 Rule templates for message reception in the case of insecure means 164

11.1 Shoup-Rubin protocol . 166
11.2 Inductive model of Shoup-Rubin: basics . 169
11.3 Inductive model of Shoup-Rubin: phase I . 169
11.4 Inductive model of Shoup-Rubin: phase II . 170
11.5 Inductive model of Shoup-Rubin: phase III . 171
11.6 Inductive model of Shoup-Rubin: phase IV . 171
11.7 Inductive model of Shoup-Rubin: phase V . 172
11.8 Inductive model of Shoup-Rubin: phase VI . 173
11.9 Inductive model of Shoup-Rubin: phase VII . 173
11.10 Inductive model of Shoup-Rubin: threats on messages 174
11.11 Inductive model of Shoup-Rubin: threats on session keys 174
11.12 Inductive model of Shoup-Rubin: threats on card outputs 174
11.13 Inductive model of Shoup-Rubin: accidents 175
11.14 Proving pairkey authenticity for Shoup-Rubin: failed 183
11.15 Shoup-Rubin-Bella protocol: fragment . 191

12.1 Hierarchical protocol design . 198
12.2 Abstract formalisation template for fair non-repudiation 200
12.3 Abstract formalisation template for certified e-mail delivery 201
12.4 Example second-level protocol and corresponding inductive model 204

13.1 Non-repudiation protocol by Zhou and Gollmann 208
13.2 Inductive model of the non-repudiation protocol 211
13.3 Proving validity of sub K for the non-repudiation protocol 213
13.4 Certified e-mail protocol by Abadi et al. 216
13.5 Inductive model of the certified e-mail protocol 219

List of Tables

14.1 Theory file sizes . 229
14.2 Proof runtimes in seconds . 231
14.3 Approximated human efforts . 232

1. Introduction

Communications across modern computer networks should be secure, an ad-
jective that embodies multiple properties. For example, one may wonder
whether a message just received was altered during its transfer. If not, then
the message is said to enjoy integrity. Even if a message that is received quotes
someone as its creator, he might be a fake one. If not, then the message con-
veys authentication of its creator. Another important property is whether the
message that is received was intercepted and understood by others besides its
creator and intended receiver. If not, then the message enjoys confidentiality.
Peer generically refers to an endpoint of a remote communication. The peers
belong to a set of agents.

Devising a complete list of properties to assure secure communications
in the context of modern computer networks is matter of current research.
Each property implicitly assumes the existence of a malicious agent, the Spy,
whose aim exactly is to violate the communications profitably. The Spy can
overhear messages during transfers, create fake messages and introduce them
in the traffic. While history tells us that various forms of security have been
important ever since ancient times, significant frauds have been orchestrated
in recent years with the help of computers containing inexpensive hardware
and software.

Cryptography may help. Used extensively also during the World Wars [97],
it is the art of coding and decoding information by means of a cryptographic
key. A cleartext message is transformed into a ciphertext one using the key
(through an operation that is called encryption). In the best case, the cleart-
ext can be retrieved from the ciphertext (through an operation that is called
decryption) if and only if the key is available. In consequence, the cleartext
is safe from the Spy as long as she does not know the key. On the contrary,
the intended receiver of the message is assumed to know the key. When the
cryptographic key used for encryption is the same as that to be used for
decryption, cryptography is said to be symmetric or shared-key (DES [125],
IDEA [105]); otherwise, it is asymmetric or public-key (RSA [138], LUC [149]).
A digital signature uses techniques of asymmetric cryptography to confirm
the author of a digital message. A message authentication code, MAC in
brief, for a message is another message computed using techniques of sym-
metric cryptography from the original message and a key that the peers share.

2 1. Introduction

This brief outline of cryptographic terminology signifies that the underlying
mathematical foundations are not of specific interest to this book. Additional
readings are easy to suggest ([97, 119, 146, 150]).

Steganography [98] may also be used for secure communications. It is the
art of hiding a message inside a larger, intelligible one so that the Spy cannot
discern the presence of the hidden message after seeing the larger one. For
example, the low-order pixel bits of a digital image may be changed to the
bits of a message to be sent confidentially while the image does not suffer
perceptible variations.

A more recent technique aiming for confidentiality and authentication is
called chaffing and winnowing [137]. It may be considered a form of steganog-
raphy, but it makes use of MACs. Sender and receiver must initially agree
on a secret key by using a key-exchange protocol such as Diffie-Hellmann
[73] or Oakley [129]. The sender authenticates his message by computing the
correct MAC for it and sending the pair formed by the message and its MAC
off to the receiver. The sender also sends chaff, namely a large number of
other pairs, each made by an intelligible random message and a wrong MAC.
Only the intended receiver of the message can discern which pair brings the
correct MAC, as he knows the secret key used to compute it. So, he alone
can winnow the received messages, namely discard the chaff and select the
original message.

The vast majority of security protocols for computer networks are based
on the first technique, cryptography; hence, they typically are cryptographic
protocols. These are sequences of steps that pairs of remote peers must take to
subsequently establish a secure communication session between themselves.
Each step requires the transmission of a message, possibly encrypted, be-
tween the peers. Messages include peer names, cryptographic keys, random
numbers, timestamps, ciphertexts and concatenations of those components.
A security protocol attempts to achieve certain goals at the time of its com-
pletion, namely a set of security properties.

Experience shows that security protocols often are flawed in the sense
that they fail to enforce their claimed goals. A security protocol precisely is
a concurrent program that can be executed by a large population of agents
including the Spy. Not only is the Spy entitled to participate in the proto-
col as any other agent, but she can also act illegally, interleaving a number
of protocol sessions. By doing so, she can exploit on a session the messages
obtained from others. Moreover, the vulnerabilities of current transport pro-
tocols let her overhear the messages exchanged by other agents. Using se-
curity measures such as cryptography to enforce the protocol goals in this
setting is not easy. This claim is supported by the large number of flaws that
have been reported. To only mention a few flaws, some affect well-known
protocols [13, 106], others can be classified [151]. Another group affects less
publicly known banking protocols, whose weaknesses have been exploited by

1. Introduction 3

dishonest employees [12]. Other flaws are due to specific implementations of
the cryptographic primitives [143].

These few citations confirm that establishing whether a protocol lives
up its promises may be very difficult. This process was only carried out by
informal reasoning until the late 1980s. If a protocol claimed to achieve a
goal, some researchers studied the protocol in detail and decided whether
this was true. At present, informal reasoning still retains its importance:

– it is crucial for grasping the semantics of protocol designs beyond their
bare representation as message sequences;

– it may find minor weaknesses or simple flaws in a protocol more quickly
than formal reasoning;

– it is fundamental for understanding certain flaws thoroughly;
– it is easier to follow by an inexperienced audience;
– it ultimately helps for developing formal reasoning and understanding for-

mal guarantees.

While informal reasoning was failing to capture serious protocol flaws, the
early 1990s saw increasing awareness that formal reasoning can be conducted
profitably on abstract protocol models [58, 99, 117]. It can effectively prove
a protocol correct in a model or otherwise detect realistic flaws. As we shall
see (Chapter 2), some methods of conducting formal reasoning lack expres-
siveness or automation, others are just too complicated to use on realistic
protocols or to suscitate industrial interest.

This book is about the use of the Inductive Method, which is supported by
the theorem prover Isabelle, to formally prove correctness of realistic proto-
col models. While the foundations of the Inductive Method are due to Paul-
son [133], our aim exactly is its development to make it capable for real-size
protocols. In achieving this aim, we have considerably extended the method,
deepened the formal reasoning about protocols and ultimately developed a
general principle of prudent protocol analysis. Therefore, this book can be
profitably read by at least anyone interested in any of the following:

– understanding the entangled technicalities hidden behind various types of
security protocols;

– learning a method of conducting formal analysis of realistic security pro-
tocols;

– teaching (verification of) security protocols;
– practicing with the theorem prover Isabelle;
– practicing with a general principle to realistically conduct formal analysis

of security protocols.

An excellent companion to the present manuscript is Boyd and Mathuria’s
recent book on security protocols [55], which eminently discusses a variety
of protocols and their underlying philosophy using a precise though informal
language. By contrast, our book uses a formal language to systematically

4 1. Introduction

disassemble the protocol features down to the smallest component and bring
to light details that might otherwise remain hidden.

The organisation of this chapter is simple. First, the motivation to our
work is discussed (§1.1), and our contribution to knowledge is sketched (§1.2).
Then, the notation that will be used throughout the book is presented (§1.3),
and the remaining chapters are outlined (§1.4).

1.1 Motivation

The foundations of the Inductive Method date back to 1996, and are pre-
sented in Chapter 3. This section refers to that initial development stage,
when our research and the subject of this book initiated. Hence, the present
tense here refers to late 1996. Our motivation is threefold: the development
of a young and promising method; the verification of real-size protocols that
have never been formally explored in a realistic setting; and the investigation
of general principles underlying correct protocols.

To gradually introduce the Inductive Method, here is its main underlying
idea: simple mathematical induction suffices to model security protocols and
reason about their goals. A key concept is the trace, a list of network events
occurring while an unbounded population of agents is running a protocol.
Traces are defined inductively and so is the set of all traces admissible un-
der a specific protocol. This set represents the formal protocol model. Proofs
can be carried out by induction on a generic trace of the model, with me-
chanical support offered by the theorem prover Isabelle. They establish trace
properties representing goals of the underlying protocol.

1.1.1 Developing the Inductive Method

Further testing. A general theory of messages and an extendible formalisa-
tion of the Spy are already available in the method. An important feature is
that no bound is stated on the size of the models. Crucially, the population of
agents who could participate in the protocol is potentially infinite: the model
agents originate from a bijection with the natural numbers. Also, each agent
is allowed to interleave an arbitrary number of protocol sessions.

However, the method has only been applied to a few classical security
protocols [131, 132]. To convince ourselves of the practicality of mathematical
induction in this context, further case studies are necessary. The security
community appears to lament that the size of the existing case studies is not
realistic. Hence, we choose to turn our attention to largely deployed protocols
and to intrinsically different protocols, such as non-repudiation ones.

Deeper understanding. Other informal criticism of the method derives
from difficulties in accepting the concept of trace, considered a “low-level”
view of the network traffic, or a structure that is “non-existent” in reality.

1.1 Motivation 5

A trace can be viewed as a possible history of the network events occurring
while the protocol is executed. This interpretation may help us understand
the key concepts of the method, although it should be verified over additional
case studies.

All proofs follow the natural inductive style adopted by humans: verifying
that the various protocol steps preserve a certain property. However, proofs
may seem “cryptic” and, consequently, their results may be accepted with
reluctance. This is often due to streamlined proof scripts, which feature highly
automatic proof methods implementing several proof steps. We intend to
favour human inspection of proofs by often preserving the linear application
of the proof steps.

Additional elements. Many protocols use timestamps to assure freshness
of important components such as session keys. The current datatype of mes-
sages does not feature timestamps. A related open issue is how to express
freshness in terms of timestamps.

The reception of protocol messages is not modelled. However, understand-
ing a formal guarantee very often involves some informal reasoning about
reception. Thus, it seems desirable to treat this event formally, although it
is not obvious whether the existing analyses would be simple to update ac-
cordingly.

Another important issue is how to account for e-commerce protocols,
which often involve smartcards. How could the cards be modelled, taking
into account the risks of cloning? How could their functionalities and interac-
tions with the agents be represented? Along the same lines, non-repudiation
protocols are expected to require a non-standard threat model in which no
agents trust each other. Its modelling price is not trivial to anticipate.

1.1.2 Verifying the Protocol Goals

Existing guarantees. The Inductive Method already features a general
method for proving the goal of confidentiality, but the early literature [131,
132] fails to mention the concept of viewpoint. The formal guarantees about
the protocols are expressed in terms of theorems established with Isabelle’s
support. They are useful to the protocol peers only when the peers can verify
whether the theorem assumptions hold. For example, if a proof of session
key confidentiality is available on assumptions that the protocol initiator can
verify, then the protocol achieves confidentiality from the initiator’s view-
point. Unless the proof can be conducted also on assumptions verifiable by
the responder, the protocol does not necessarily guarantee confidentiality to
the responder. As an extreme concern, we may wonder whether a guarantee
featuring assumptions that are impossible to verify would be of any practical
importance.

While the treatment of confidentiality is, as mentioned, satisfactory, that
of authentication is not. The latter is an important and complicated goal

6 1. Introduction

that may hold in a hierarchy of forms, as confirmed by Lowe using another
formal method [109]. However, the current formalisation of authentication
using the Inductive Method fails to express the knowledge of the very message
components that authenticate the agents (a satisfactory explanation of the
various authentication forms must be deferred until later, §4.6). Investigating
how many and which forms our method captures at present is challenging.

Novel guarantees. The well-known goals of integrity, authenticity, key dis-
tribution and strong forms of authentication need to be treated formally with
the Inductive Method. To illustrate, we observe that even when the initia-
tor is informed that session key confidentiality holds, it is not consequently
obvious that the responder shares the same session key or that he means to
share it with the initiator. It is not clear at this early stage what and how
substantial the extensions necessary to formalise these goals might be. Some
of the existing guarantees might have to be reinterpreted.

1.1.3 Investigating the Protocol Principles

One of the ultimate goals of analysing security protocols formally is to derive
the general principles that make them secure. Ideally, we would like to have
simple rules, adherence to which would be easy to check and would directly
guarantee the security goals.

The best-known set of principles of prudent protocol design is due to
Abadi and Needham [7]. The main principle is explicitness, which prescribes
each message to say exactly what it means without ambiguity. Other princi-
ples include avoiding unnecessary encryption and synchronising the network
clocks when timestamps are used. Unfortunately, these principles are far from
ideal, as they are neither sufficient nor always necessary to assure security.

It is interesting to investigate whether the findings obtained using the
Inductive Method would support these principles or clarify how relevant they
are to the goals of a protocol. Moreover, the deeper study of the goals that we
advocated above might unveil new principles not only to design the protocols
but also to analyse them realistically.

1.2 Contribution

Our contribution is multifaceted. It is simplest to present it in relation to the
motivation of the research.

1.2.1 Inductive Method

The Inductive Method (Chapter 3) turns out to be easily extendible. Time-
stamps are modelled using a discrete formalisation of time based on the
position of each event in a trace. Each history of the network is equipped

1.2 Contribution 7

with a global clock corresponding to the length of the corresponding trace,
and so each trace has a global clock yielding the current time of the trace. All
agents refer to it, so the model hides problems of clock synchronisation. A
message component is considered fresh in a trace if the time interval between
the creation of the component and the current time of the trace is less than or
equal to the lifetime allowed for the component. Session keys are considered
valid if and only if they are used within their lifetime.

These extensions have allowed us to mechanise the proofs of correctness
of three protocols that make use of timestamps: the BAN Kerberos protocol
(Chapter 6), the larger and deployed Kerberos IV (Chapter 7), and finally
the more recent Kerberos V (Chapter 9). Although they share the structure
of a few messages, each protocol hides peculiar subtleties. Their proof scripts
are fairly intuitive because of the limited use of automatic proof methods,
which is another of our goals.

New events can be modelled. In particular, introducing message recep-
tion makes the specifications more readable and the proofs easier to follow,
increasing overall intuitiveness. The existing scripts can be updated prag-
matically, with minor effort. Message reception is not forced to occur. This
models a network that is entirely controlled by an active Spy who can in-
tercept certain messages and prevent their delivery. Moreover, the reception
event allows the formalisation of any agent’s knowledge, rather than just the
Spy’s, in terms of message deducibility.

New elements, such as extra trusted servers or smartcards, are modelled
as new types of the language. For smartcards, the interaction with their own-
ers is formalised by additional events (Chapter 10). The agents’ knowledge,
in particular the Spy’s, must be reviewed for two reasons: (i) all long-term
secrets are now stored only in the cards; (ii) certain protocols that are based
on smartcards assume that the Spy cannot listen to communication between
a card and its owner, while other protocols do not make this assumption. We
verify the entire Shoup-Rubin protocol (Chapter 11) using a faithful model
obtained both from the informal specification of the protocol and the de-
scription of its implementation. The protocol involves new long-term secrets,
which can be easily introduced in the definition of agents’ knowledge.

Another success is the treatment of accountability protocols, which aim
at giving peers evidence of each other’s participation. They require a funda-
mental change to the threat model because the Spy no longer is an opponent
between two peers who trust each other but, rather, can hide behind any of
the peers (Chapter 12). We shall see that this change is not difficult to imple-
ment through the complete analyses of a non-repudiation protocol by Zhou
and Gollmann and a certified e-mail protocol by Abadi et al. (Chapter 13).
Some of these protocols assume the existence of a communication channel
secured by a standard protocol such as TLS/SSL [72]. We have found simple
formalisations for secure transmission over such channels using specific forms
of the available events.

8 1. Introduction

To summarise, our research equips the Inductive Method with all the
necessary features to tackle industrial protocols. The subsequent verification
of the SET protocol [36, 37, 38] confirms this. In general, the method has
become so expressive that the bare statements of the theorems convey most
guarantees without considerable informal argument to make on top of them.
Therefore, the exposition accompanying each theorem reduces to the very
minimum.

1.2.2 Protocol Goals

We find that the argument about any protocol goal can (and must, see the
next section) be interpreted from the viewpoint of each peer, although this
may not be trivial regardless of the formal method in use (Chapter 2). While
this practice provides the human analyser with a better understanding of each
protocol step, it also produces formal guarantees that the peers can apply
in practice, as we shall see. During this interpretation process, we realise
that one assumption of a theorem that has been proved for the shared-key
Needham-Schroeder protocol is in fact entirely superfluous. Our study of the
protocol goals supports the claim that the goals of authenticity and integrity
are equivalent (§4.3), while the corresponding guarantees can be derived from
reinterpreting some of the existing theorems (Chapter 4).

Paulson’s method for proving confidentiality is still effective after the
modelling of timestamps. However, several specific lemmas are necessary with
Kerberos IV because of its hierarchical distribution of session keys. We have
unveiled an important weakness in the protocol management of timestamps
and lifetimes: it lets the Spy exploit certain session keys in realistic circum-
stances within their lifetime. Moreover, the agent to whom the session keys
have been legally granted is no longer present on the network, and so will not
register any irregularity.

Two different definitions of agents’ knowledge are developed and vari-
ously compared. One may appear to be simpler as it exclusively relies on
message creation through trace inspection. The other is based on full mes-
sage deducibility from the traffic that is sent or received (Chapter 8). The
latter requires an explicit formalisation of message reception, and so allows
us to formally study the goal of key distribution. We argue that this goal
is equivalent to a strong form of authentication (§4.7), as we demonstrate
on both BAN Kerberos and Kerberos IV. As for Kerberos V, we shall see
that its goals are somewhat equivalent to those of Kerberos IV, although its
design calls for alternative proof methods.

Verifying the goals of the protocols that are based on smartcards only
requires minor modifications to the existing proof methods. A set of simplifi-
cation rules must be proved to deal with the new events and the new definition
of agents’ knowledge. Also the smartcards may require guarantees that the
protocol goals are met. Two of the messages of the Shoup-Rubin protocol
lack crucial explicitness, so that none of the peers knows which session key

1.2 Contribution 9

is associated with each other. The confidentiality argument is significantly
weakened in the realistic setting in which the Spy can exploit other agents’
smartcards. The proofs suggest a simple fix to the protocol, yielding stronger
guarantees against veracious threats.

The goals of accountability protocols can be also analysed by induction.
We have developed simple proof methods for the main goals of validity of
evidence and of fairness. The former confirms that certain messages truly
count as evidence of an agent’s participation in the protocol. Fairness is an
additional goal, requiring the appropriate evidence to be either available to
both peers or to none, so that no one is advantaged. Various forms of both
goals can be proved by simply showing that certain events always precede
specific others on the protocol traces. This treatment is demonstrated on
both the non-repudiation protocol and the certified e-mail protocol.

Admittedly, our proofs were difficult to develop. The analyses of Kerberos
IV and Shoup-Rubin, for example, saw certain proofs take up to four man-
weeks each to be developed, while the corresponding script was up to 50
Isabelle commands long. Polishing the original scripts often shortens them
up to approximately one fifth of their original length, thanks to a moderate
use of Isabelle’s automatic proof methods, in which subsidiary lemmas can
be installed. As mentioned, this must be done with care, for it may affect
the resulting intelligibility. However, proof scripts are doomed to change over
time as Isabelle evolves, while proof methods will rarely change. Hence, this
book concentrates on the general methods rather than on the actual Isabelle
scripts, some of which are demonstrated in the appendices.

1.2.3 Protocol Principles

Our research favours the development of protocol principles, namely those
meta-rules that contribute to guaranteeing security. However, no principle is
found to be sufficient in general.

To be precise, the importance of explicitness is confirmed. The messages
that are not explicit about their meaning force the peers to heuristic interpre-
tations that turn out to be extremely risky. This was known to affect classical
protocols such as the public-key Needham-Schroeder; but we find that it also
affects protocols that are apparently stronger, such as Shoup-Rubin, a smart-
card one. We stress that studying adherence to the explicitness principle al-
ways requires an assessment of the underlying threat model. For example, if
a communication is assumed to be preauthenticated, then quoting the peer
names may be unnecessary.

Explicitness is also interesting from the proof perspective. We find that,
if a message lacks explicitness, then carrying out any proofs about it requires
quantifying existentially the exact components that are not sufficiently ex-
plicit. The prover needs either to bind them to the assumptions or to con-
jecture that they exist. It could be argued that mere expertise in theorem

10 1. Introduction

proving can discover lack of explicitness and therefore make up for compe-
tency of prudent protocol design.

The verification of Kerberos IV confirms the principle that extra encryp-
tion does not necessarily strengthen confidentiality. Despite the double en-
cryption of the responder’s session key, the key is vulnerable to the attack
mentioned above, under a realistic threat model. Additional support for the
principle derives from the analysis of Kerberos V, which attains similar confi-
dentiality goals and suffers the same attack although it disposes with double
encryption.

Our attention to the agents’ viewpoints in carrying out formal protocol
analyses leads us to the development of a principle of prudent protocol analy-
sis. This seems to be the first time that a principle is spelled out to guide the
analysis of protocols rather than directly their design. Secure protocol design
of course remains the ultimate aim. But analysis and design are equally im-
portant because the former is meant to influence the latter. Only a realistic
analysis will contribute to a truly more robust design.

Our principle of prudent protocol analysis is called goal availability (Chap-
ter 5). It holds for a protocol, one of its goals and one of its peers if there exist
guarantees from the peer’s viewpoint that the goal is met. The guarantees
must rely on assumptions that the peer is able to verify in practice. How-
ever, for each peer we can identify a set of assumptions that are necessary
although the peer can never verify them: they form the peer’s minimal trust.
Goal availability tolerates the minimal trust.

Adherence to goal availability may be sufficient to prevent certain attacks
or weaknesses either directly (as with Kerberos IV) or indirectly (as with
Shoup-Rubin). The attack on Kerberos IV is in fact due to a violation of
goal availability where the goal is session key confidentiality for the protocol
responder. The weaknesses of Shoup-Rubin are due to the lack of explicitness
discovered through the verification of adherence to goal availability. In this
light, our principle seems easier to verify than the explicitness principle, whose
definition is less constructive.

1.3 Notation

The notational conventions that are used throughout this book are sum-
marised here. Although they are rather standard, digesting them appropri-
ately is very useful to understanding this book thoroughly.

1.3.1 Presenting the Protocols

Getting to grasps with the syntax of messages is fundamental. Fat braces “{|”
and “|}” [133, §2.1] are used to distinguish protocol messages from sets, and
also to indicate the encryption operation. They are omitted in the case of

1.3 Notation 11

messages whose outermost constructor is concatenation, and in the case of
ciphertexts whose body is a single-component message. For example:

– a ciphertext made by encrypting with key K a two-component message
consisting of m concatenated with n is indicated as {|m,n|}K ;

– a two-component message consisting of m concatenated with n is indicated
as m,n;

– a single-component message m encrypted with key K is indicated as mK .

The security protocols will be presented using what today is a rather
standard notation. For each protocol step (which essentially sends a message),
the step number, the sender and the intended recipient of the message, and
the message itself are indicated.

1. A −→ B : A,Na

2. B −→ A : {|Na,Kab|}
sK−B

Fig. 1.1. Example protocol

Figure 1.1 presents an example protocol that helps to demonstrate the
notation. The protocol consists of two steps. In the first step, agent A sends
agent B the two-component concatenated message formed with her own iden-
tity and Na. In the second step, agent B replies to A with a ciphertext ob-
tained by signing with his key sK−

B the concatenation of Na with another
key Kab. It is unnecessary to detail the messages precisely at this stage. We
in fact state nothing about the keys and only anticipate that Na and Nb
are nonces. A nonce is a random “number that is used only once” [126]. In
our example protocol, A invents the nonce Na: it has never been used before.
Hence, its use tells A, upon reception of the second message, that B’s reply is
more recent than the instant Na was created. Nonces can also help establish
various forms of authentication, as we shall see in this book.

A full understanding of the notation requires a reference to the threat
model in which all protocols will be studied. The Spy can intercept all mes-
sages and prevent their delivery. She can also tamper with them by decom-
posing concatenated messages and opening up ciphertexts sealed with keys
she knows. Then, she can use the learnt message components to form new
messages at will by concatenation and encryption. This threat model, which
we shall discuss more extensively (§3.9), is due to Dolev and Yao [75], and
is a de facto standard for protocol analysis at present. In this threat model,
a message that is sent is not necessarily ever received, and the receiver of a
message is not necessarily its intended recipient. Therefore, a protocol step
such as A −→ B : A,Na signifies that A sends the two-component message
to B but says nothing about B’s reception of the message.

12 1. Introduction

1.3.2 Naming the Theorems

This section presents a general naming paradigm that we adopt for all theo-
rems throughout this book. The theorem names are identical to those in the
proof scripts, which come with the Isabelle repository [33, 34] from the 2006
distribution. We shall see (§3.1) that it is useful to execute the relevant proof
scripts interactively while the theorems are discussed throughout the book.

When we terminated a large protocol proof, which perhaps had taken up
to weeks of concentration, one of the last things we usually worried about
was the choice of the best, most expressive name for the theorem just proved.
However, we now realise that a uniform naming system becomes especially
important when putting together theorems about distinct protocols, as is
the case with this book. It also helps in interpreting the theorems properly.
Precisely, we have to face the following three issues.

1. Theorem names should be correctly expressive. When we read a theorem
name, we would like to grasp its meaning, namely the goal it is trying to
express, from its name. To achieve this, it was necessary to go back to all
proof scripts and change many original theorem names. For example, the
word “trust” was abused by many theorems establishing the originator of
a message. Since that word is currently used mostly in relation with trust-
worthiness of agents, we found that it was inadequate. Authenticity of
messages or authentication of agents seemed more appropriate terms. To
only give an instance of this evolution of names, Theorem 6.5.2 is now ad-
dressed as BK Kab authentic, but its original name was A trusts Kb2.
All theorem names are now coherent with the goal names that we set
below (Chapter 4).

2. Theorem names should be coherent between various protocols though not
identical. If we establish the same guarantee (say, of confidentiality) for
more than one protocol, we would like the relevant theorems to have
the same names so that they would favour comparative considerations.
However, having two or more theorems named identically in a book may
appear contradictory. To set about this issue, we decided to prefix only
in the book each theorem name with the acronym in capital letters of the
protocol name it refers to. In this vein, the prefix BK of the mentioned
Theorem 6.5.2 reminds us that it refers to the BAN Kerberos protocol.
An analogous guarantee for Kerberos IV is Theorem 7.3.3, whose name
KIV authK authentic correctly identifies the protocol. The different key
name addresses the ambiguity only in this case. A more evident example
derives from the session key confidentiality guarantees for Kerberos IV,
such as Theorem 7.3.14 called KIV Confidentiality B, and for Kerberos
V, such as Theorem 9.3.1 called KV Confidentiality B.

3. Theorem names should be coherent between various versions of the same
guarantee. There are often various versions of the same theorem for var-
ious reasons. We maintain coherence between the various version names
by adding a prefix and/or a suffix as follows.

1.3 Notation 13

– Once a theorem is proved, it is often possible to weaken or strengthen
its assumptions and derive weaker or stronger facts. We indicate such
a variant theorem by adding the bis suffix to the original theorem
name. For example, SR Outpts A Card form 10 bis is the name of
Theorem 11.3.8. There may also be another variant, in which case the
ter suffix is added to the original theorem name.

– The fewer the assumptions made, the easier to grasp a theorem nor-
mally turns out to be. This is particularly so with assumptions of key
confidentiality, which normally expand into several facts when relaxed.
For the sake of presentation, it often becomes preferable to leave such
assumptions unrelaxed. The theorem versions where all assumptions
are relaxed into elementary facts are indicated by the r suffix. For
example, Theorem 6.5.10 is called BK A authenticates B r.

– Once a protocol is thoroughly analysed, we may find it relevant to
update its design and repeat the analysis in a separate theory file. The
theorem names for updated protocols receive a conventional prefix as
described above. For example, Theorem 8.5.1 for our updated Otway-
Rees protocol is called ORB analz hard, the B standing for Bella.
Also the name of the new theory file is updated accordingly (§3.2). By
contrast, the theorem names reflecting minor updates that can coexist
within the original theory file are only continued with a u. Some of
these theorems are mentioned but never presented in this book to limit
redundancy.

– When we introduce the Gets event to formally model message reception
(§8.2), the existing protocol models must be updated accordingly (in a
separate theory file). The prefix of their theorem names is suffixed with
a g. For example, Theorem 8.4.7 for the Kerberos IV model with mes-
sage reception is called KIVg B authenticates&keydist to A. Also
the name of the new theory file is updated accordingly (§3.2).

1.3.3 Wording the Symbols

Logical statements contain specific symbols with dedicated semantics. We re-
place most Isabelle symbols with the corresponding English phrases whenever
their semantics is obvious and the replacement can improve readability.

– Logical conjunction (∧) with and.
– Logical disjunction (∨) with or.
– Logical negation (¬) with not.
– Logical equivalence (↔) with if and only if.
– Disequality (6=) with is not.
– Meta-level implication ([[...]]=⇒...) with if . . . then
– Existential quantification (∃) with for some.
– Universal quantification (∀) with for any.

14 1. Introduction

By contrast, it is best to preserve other symbols exactly for the sake of
readability. Isabelle’s graphical interface offers perfect mathematical sym-
bols [160].

– It is convenient to keep logical equality in symbols (=) because it can
be used to specify variable expansions (abbreviations) among the theorem
preconditions, while the variable can be compactly mentioned even repeat-
edly among the theorem conclusions. Isabelle supports well this form of
equational reasoning, as this book confirms.

– Having conducted some experiments of wording set membership (∈), we
concluded that it is quicker to grasp in symbols — with only one exception.
It is preferable to state that a list contains an element, which is often
needed below, rather than to use the symbol for set membership over the
set of elements that the list contains.

– Other set operators, such as union (∪) and inclusion (⊆), which are rarely
used below, are kept in symbols.

Syntax is left completely unaltered when it is quoted for the sake of
demonstration — always in figures — such as when the protocol models
are presented.

1.4 Contents Outline

This section briefly outlines the chapters of this book.

Chapter 2 reviews some of the main formal methods for analysing security
protocols. Such a large variety of methods has been advanced that the
chapter cannot present all of them. The importance of interpreting the
findings cautiously is emphasised. The difficulties in conducting the anal-
yses do not seem to be related to those in interpreting the findings, as
various examples confirm.

Chapter 3 outlines the Inductive Method as it was in late 1996, when our
research initiated. The presentation of the method is gradual and in-
formative, as it gives particular attention to the intuition behind each
construct. The chapter begins with an introduction to the working envi-
ronment for the method, namely the theorem prover Isabelle, and termi-
nates with an example of a protocol model.

Chapter 4 formalises in the Inductive Method the most important guaran-
tees for the protocol models. With every protocol that is analysed, those
guarantees form the aim of our analysis, and hence the chapter intro-
duces important terminology. Seven groups of guarantees are given, each
expressing an important protocol goal, except for a group that helps to
validate the protocol models. Proof methods and examples are provided.

1.4 Contents Outline 15

Chapter 5 defines our general principle of prudent protocol analysis, goal
availability. An abstract version is given first, in order to favour the
reader’s intuition, while a more detailed version only comes after ad-
ditional discussion. Then, the related concept of minimal trust is put
forward. The principle is demonstrated only on a simple protocol but
additional examples are frequent in the subsequent chapters.

Chapter 6 extends the Inductive Method with a treatment of timestamping,
which requires both a formalisation of time and a definition of time-
stamps. We find simple solutions for both issues. Then, the BAN Ker-
beros protocol can be formally analysed. Finally, a temporal modelling
of the accidental loss of session keys is introduced. The protocol model
is updated accordingly and all guarantees revisited correspondingly.

Chapter 7 presents the formal analysis of Kerberos IV. The treatment of
timestamping and the temporal modelling of accidents is inherited from
the previous chapter. The protocol achieves strong goals but it fails to
conform to our principle of goal availability in the case of confidentiality
of a group of session keys for the responder. This leads to realistic attacks,
but a simple fix is introduced and verified.

Chapter 8 introduces the modelling of agents’ knowledge in the Inductive
Method using two definitions. They are demonstrated on the protocols
presented above by adding treatments of the key distribution goal and
of a stronger version of authentication, which were impossible before.
The two definitions are variously compared and contrasted, offering an
argument that can refute a claim previously made by the BAN logic.

Chapter 9 reports on the formal analysis of Kerberos V, the most recent
version of the Kerberos protocol. The main difference with the previous
version in terms of design is the removal of the use of double encryption.
We verify that this difference does not significantly influence the protocol
goals, which are analogous to those of the previous version. However,
different proof methods become necessary.

Chapter 10 describes a realistic treatment of smartcards in the Inductive
Method. Since some protocols explicitly assume that the communication
means between the cards and their owners is secure, while others do
not, our treatment develops around both options. The Spy is allowed
to exploit an unspecified set of smartcards, some through simple theft,
others through elaborate tampering ultimately leading to cloning.

Chapter 11 uses the extended method of the previous chapter to analyse the
Shoup-Rubin protocol, which makes use of smartcards. The protocol is
generally strong, but it is found to violate our goal availability princi-
ple for the goal of session key confidentiality. This reveals two important
shortcomings of explicitness that affect three goals: confidentiality, au-
thentication and key distribution. A simple fix is introduced and verified.

Chapter 12 extends the Inductive Method to deal with accountability proto-
cols. Non-repudiation and certified e-mail delivery are recognised as forms

16 1. Introduction

of accountability, where the peers get evidence of each other’s participa-
tion. Abstract formalisations of these novel goals are provided along with
appropriate methods to prove them. The concept of second-level protocol,
which relies on another security protocol, is advanced.

Chapter 13 uses the extensions introduced in the previous chapter to describe
the analyses of two emblematic accountability protocols. They are both
studied in terms of validity of the evidence provided to the peers and
in terms of its fairness. The threat model appropriate for this group of
protocols is used: an honest agent enjoys the protocol goals even when
his peer is the Spy. Both protocols appear to achieve their claimed goals.

Chapter 14 concludes the book with a few final remarks, and summarises our
contribution through its key concepts. It also briefly advances some lines
of possible future work. Finally, it comments on some statistics about
file sizes, proof runtimes on two common and inexpensive platforms, and
human efforts necessary for the entire book.

There are four appendices to complete the presentation. They present a
few relevant fragments of the proof scripts about the main protocols that
the book discusses. Such fragments are released with the 2006 distribution
of Isabelle [33, 34] (before that distribution appears, they are available with
the development snapshot [156]).

Appendix A concerns the Kerberos IV protocol, presenting the guarantees
of reliability, session-key compromise, and session-key confidentiality.

Appendix B concerns the Kerberos V protocol, presenting the guarantees of
unicity, unicity relying on timestamps, and conjunct key distribution and
non-injective agreement.

Appendix C concerns the Shoup-Rubin protocol, presenting the definitions
of two important functions and related technical lemmas, and the guar-
antees of authentication.

Appendix D concerns the Zhou-Gollmann protocol, presenting the guaran-
tees of validity of main and subsidiary evidence, and fairness.

2. The Analysis of Security Protocols

Several approaches may be taken to analysing security protocols for-
mally. Each approach has strengths and limitations, while it is certain
that machine support can dramatically assist. The findings may not
be straightforward to interpret.

The 1990s increased the awareness that formal methods can significantly
contribute to the analysis of security protocols. This decade seems to have
turned that awareness into an established fact. In this chapter, we outline a
few of the approaches to protocol analysis that stand out for originality (§2.1),
and provide some general examples of interpreting their findings (§2.2).

We will see that Abstract State Machines (§2.1.1) allow for a formal and
rigourous representation of the operational semantics of protocols, although
they currently appear to demand deeper integration with mechanical tools.
Belief Logics (§2.1.2) give a formal representation of the beliefs that the peers
derive during the execution of a protocol, but fail to capture several protocol
weaknesses. They are a milestone in the field, opening the ground to a num-
ber of research efforts. Lately, Constraint Programming (§2.1.3) has advanced
a new perspective: a quantitative analysis of security protocols. Such analysis
proceeds from the observation that each protocol goal is always reached in
reality at a certain level (of strength, robustness, reliability, etc.), rather than
entirely in the boolean sense. Provable Security (§2.1.4) allows for a proba-
bilistic study of the secrecy goals. It is the only notable method that disposes
with the black-box assumption on cryptography, and instead relies on a prob-
abilistic account of the robustness of the crypto-algorithms. The Spi-calculus
(§2.1.5) can effectively reason about the main protocol goals. It extends a
popular concurrent language with cryptographic primitives and a formalisa-
tion of a malicious attacker. State Enumeration (§2.1.6) verifies exhaustively
that a protocol model of limited size admits no attacks. Although it records
a number of efforts to exceed its limitation to finite models, it has notably
advanced the field of protocol verification. Also Strand Spaces (§2.1.7) are rel-
evant, as they can be used to elegantly model a variety of detailed protocol
features. Their mechanical tool support seems to be developing quickly. The
Inductive Method, which is discussed in the next chapter, appears to embody
the most desirable features: it can reason about a variety of protocol goals

18 2. The Analysis of Security Protocols

on models of unbounded size, and is mechanically supported by the theorem
prover Isabelle.

Interpreting the contributions of protocol analysis is not straightforward.
The effort put in interpreting the findings is often unrelated to the effort
in obtaining them. We present examples of findings that are easy to obtain
and interpret, on the TMN protocol (§2.2.1); fairly easy to obtain but fairly
difficult to interpret, on the Woo-Lam protocol (§2.2.2); difficult to obtain
but easy to interpret, on the public-key Needham-Schroeder protocol (§2.2.3);
and difficult to obtain and interpret, on the shared-key Needham-Schroeder
protocol (§2.2.4). The list does not attempt to be exhaustive but merely to
highlight that most issues about the protocols and their analyses are not at
all simple, although they may, at first, appear to be.

2.1 Formal Approaches

This section outlines some of the most original formal approaches taken thus
far for analysing security protocols. It will be clear that each of them has
both strengths and limitations. The presentation develops in alphabetical
order rather than along the timeline. It has an informative style but no aim
to provide a complete survey.

2.1.1 Abstract State Machines

Gurevich’s Abstract State Machines, ASMs in brief [54], formerly known as
Evolving Algebras [86], are born as a general-purpose formalism that should
be more flexible than a Turing machine but retain the same power. There-
fore, the ASM thesis is that any computable program can be represented
by a suitable ASM. An ASM is essentially a first-order signature equipped
with a program that is a set of if-then-else rules. Once an interpretation of
the signature is provided, a static algebra originates, the initial state of the
ASM. Such a state can be updated by the rules of the program, which, up-
dating certain elements of the signature, produce a new algebra, namely a
new state. The admissible functions include oracles, whose interpretation is
not influenced by the ASM program, but is provided by the environment at
each state. In consequence, the resulting computational model is not linear
but has a graph structure.

The formalism, which has been benchmarked on a large variety of real-
world applications [53], has also a distributed variant where each agent can
independently run his own program. We tailored this variant for the anal-
ysis of security protocols. Initially, we modelled the Kerberos IV protocol
using stepwise refinements in the presence of the Spy. Confidentiality at the
more detailed level was investigated by simulation [45]. This was the first
formal specification of the entire protocol, obtained from the substantial in-
formal documentation provided by its designers [121]. It has significantly

2.1 Formal Approaches 19

simplified the task of deriving an inductive model for the protocol, which we
present below along with its correctness proofs (Chapter 7). Then, we de-
veloped a general theory of messages and demonstrated it on the public-key
Needham-Schroeder protocol [46]. Proofs were conducted by induction but
still by pen and paper. However, integration with mechanised tools, such as
model checkers [165] or theorem provers [80], has now reached an advanced
stage of development.

Rosenzweig et al. take an orthogonal approach [140] adopting ASML [154],
a programming language for ASMs recently developed at Microsoft. Speci-
fications written in ASML are therefore fully executable and interoperable
with other languages of the .NET family. As the language is object-oriented,
basic items such as cryptographic keys and related operations can be easily
described as classes extending other basic classes. The resulting treatment is
neat and fairly general, arriving at an abstract formalisation of confidentiality
in terms of indistinguishability of messages. The machinery is demonstrated
on simple protocols, and properties are established by mathematical proofs.
Applications to real-world protocols are expected.

2.1.2 Belief Logics

The belief logic due to Burrows et al. [58] counts as the first significant at-
tempt to exceed the limits of informal reasoning. The main idea is to formally
represent the beliefs that the agents running a protocol derive at the various
stages of the execution. Each step of the protocol is idealised as an (initial)
logical formula, while a set of logical postulates is provided. The formulae
that, using the postulates, can be derived from the initial ones formalise the
goals of the protocol. For the sake of demonstration, we present three typical
formulae with their respective semantics [58, p. 236].

– “P would be entitled to believe X. In particular, the principal P may act
as though X is true.”

P |≡X

It is often denoted also as P believes X.
– “P and Q may use the shared key K to communicate. The key K is good,

in that it will never be discovered by any principal except P or Q, or a
principal trusted by either P or Q.”

P
K←→ Q

It is often denoted also as P and Q share K.
– “The formula X is fresh, that is, X has not been sent inside a message at

any time before the current run of the protocol.”

#(X)

It is often denoted also as X is fresh.

20 2. The Analysis of Security Protocols

The semantics provided by the authors turned out to be unsatisfactory
and several attempts were made to repair the problem [8, 52]. For example,
it is not clear from the first formula if P might believe something that is
in fact false. The BAN logic indeed claims correct some protocols that were
subsequently found to be flawed, such as a variant of the Otway-Rees pro-
tocol (Figure 8.4) that does not encrypt the nonce issued by the protocol
responder. An attack is possible, whereby the protocol initiator would share
a session key with the Spy at completion of the protocol, while believing to
be sharing it with the intended responder [132, §3.8]. This is both a violation
of confidentiality and of authentication. Another example is the public-key
Needham-Schroeder protocol (Figure 2.5), which passed the logic analysis
without inconvenience: Lowe discovered a few years later that the protocol
suffers a subtle failure of authentication [106].

The second formula has been considered ambiguous because it embodies
the goals of both confidentiality and key distribution. The third formula is
crucial to the analyses. For example, it is used to specify that the shared-key
Needham-Schroeder protocol (Figure 2.6) does not guarantee the protocol
responder that the received session key is fresh. In fact, Denning and Sacco
had already pointed out that the Spy might fool the responder into accepting
an expired session key as a fresh one [71].

A major limitation of the belief logics is how to reason about confiden-
tiality. This is done informally on top of the formulae derived through the
calculus of the logic, since no malicious entity is modelled explicitly. A num-
ber of extensions have been designed in order to enhance the expressiveness
of the logic and account for further protocol goals [3, 82, 115] but they tend
to sacrifice the intuitive nature of the logic itself. Proofs by belief logics are
typically short and carried out by hand, but certain logics have been imple-
mented [56, 57] using the theorem prover HOL [85].

Cervesato et al. [60] have recently developed yet another logic to study
authentication but not confidentiality. Its main merit is a clear identification
of the relation between the two goals: they often assume each other. The logic
clearly states those confidentiality assumptions that are needed to reason
about authentication. Other methods can then be used to establish whether
those assumptions are met.

2.1.3 Constraint Programming

This method specifies a system in a declarative style through a number of
constraints that the system must satisfy. A crisp constraint is a predicate
over certain variables and corresponding values taken from a domain set.
If the constraint is satisfied, then the variables must take those values. A
soft constraint is a function that associates domain values with variables at
a certain level, which can be variously interpreted, taken from a partially
ordered set [49]. Once a system is specified as a constraint satisfaction prob-

2.1 Formal Approaches 21

lem, studying the system reduces to solving the corresponding satisfaction
problem, which can be efficiently done algorithmically.

Constraint programming has provided important support to other meth-
ods of analysis based on state enumeration, which we mention below (§2.1.6).
These establish security properties such as confidentiality when a finite num-
ber of possible states of the system under analysis can be checked to main-
tain the properties. This reachability problem is undecidable in the general
case [76], but Millen and Shmatikov show that it can be decided in a simpli-
fied case by reducing it to a constraint solving problem [120]. Later, Corin
and Etalle build up on this work [65].

Constraint programming has also helped us study in detail security prob-
lems such as coherence of integrity policies [50] and confidentiality achieved
by security protocols [29]. In particular, the use of soft (rather than crisp)
constraints allows for a quantitative analysis of the target system [31]. The
formal properties are no longer mere yes-or-no predicates but carry an extra
parameter expressing their strength or, broadly speaking, their security. For
example, a crisp analysis may find out that an implementation of an integrity
policy does not uphold some stated requirements. The analyser might move
on to a soft analysis, looking for the best of the previously unacceptable
implementations.

The same analysis performed over the network scenarios induced by a se-
curity protocol can, for example, distinguish more confidential messages from
less confidential ones. Formal statements such as “this message component
has maximum confidentiality” or “this message has unacceptable confiden-
tiality” are possible because each property carries the mentioned security
level. Because of the declarative style of the specification, the method has
been stretched to authentication properties with some difficulty, although
the final outcome [30] is surprisingly expressive.

2.1.4 Provable Security

Provable security is a complexity-theoretic study of confidentiality. Originally
developed by Bellare and Rogaway to address the problem of two-agent au-
thenticated key exchange [47], the notion was later extended by the same
authors to cope with the three-agent setting where a trusted Server helps to
achieve the goal of distributing session keys to a pair of peers [48]. They com-
ment that devoting the entire effort of formal analysis towards establishing
that a protocol suffers no attacks is unsatisfactory: “there is finally a general
consensus that session key distribution is not a goal adequately addressed by
giving a protocol for which the authors can find no attacks” [48, §1.2].

In this setting, Bellare and Rogaway formally define the problem of session
key distribution, design a security protocol and prove it secure assuming the
existence of a family of pseudorandom functions (PRFs). To show that this
assumption is minimal, they prove that if a secure session key distribution
protocol exists, then a one-way function exists; then they apply the existing

22 2. The Analysis of Security Protocols

result stating that a PRF family exists if a one-way function exists [90]. The
protocol is claimed secure in terms of two properties. The first is key distri-
bution, signifying that both peers know the same session key at completion
of the session. The second is the Spy’s probabilistically negligible advantage
on the discovery of the key, namely confidentiality of the key. All relevant
proofs are carried out by hand and involve substantial formal overhead. But
this work is a fine piece of theoretical research.

Shoup and Rubin later extend the approach with an account of smart-
cards, design a new protocol based on smartcards, and prove it secure. It
would seem that provable security cannot express certain details of the con-
fidentiality goal which we discuss below (Chapter 11) in relation to a clear
statement of the underlying threat model. The actual protocol design must
be adapted for the analysis, rather than vice versa, a practice that may raise
the risks of verifying a different design. Shoup and Rubin seem to support this
view, as they state that “several modifications to the protocol were necessary
to obtain our proof of security, even though it is not clear that without these
modifications the protocol is insecure” [148, §2.2]. Along the same lines, the
implementors of the Shoup-Rubin protocol also point out that “the details
of Shoup-Rubin are fairly intricate, in part to satisfy the requirements of an
underlying complexity-theoretic framework” [96].

2.1.5 Spi-calculus

The spi-calculus [6] is an extension of the more popular π-calculus [122] with
primitives representing the cryptographic operations of encryption and de-
cryption. Like other process calculi, it is based on processes that commu-
nicate through channels. Channels may be restricted in the sense that only
certain processes may communicate on them. The π-calculus and the derived
spi-calculus allow the scope of each such restriction to dynamically change
during the computation. A process may decide to send a message on a re-
stricted channel to a process outside the scope of the restriction. When this
happens, the scope is said to extrude.

It is intuitive to use the restricted channels to model confidentiality and
the scope extrusion to allow for communication of secrets. Once the Spy is
modelled as an arbitrary environment for the protocol, confidentiality of a
message X derives from equivalence checking two protocol specifications, one
featuring X, another an arbitrary X ′. The idea of the proof is that the pres-
ence of X does not influence the reaction of the environment. However, the
details may be difficult to grasp: “If you get lost in the formal passages of the
paper, the cleartext nearby may help — hopefully the informal explanations
convey the gist of what is being accomplished” [6].

More recent verification strategies based on Woo and Lam’s concept of
correspondence assertion [167] aim at establishing strong causal relations be-
tween the protocol events to reason about authentication. Our formalisation
of the authentication goal (§4.6), which in general establishes that an event

2.1 Formal Approaches 23

precedes another, seems to have much in common with correspondence asser-
tions, although we do not need to state any size limits. Gordon and Jeffrey
initially show how to embed correspondence assertions in the π-calculus and
prove them by type checking [84], so that infinite states can be treated. How-
ever, the method does not address security issues and hence is only adequate
for communication protocols. The same researchers, inspired to Abadi’s sem-
inal work on secrecy by typing [1], later extend their technique to the context
of the spi-calculus [83]. Properties of security protocols can be treated in the
extended framework, which formalises an opponent.

2.1.6 State Enumeration

The well-known process calculus CSP [92] has had vast applications in the
field of formal methods thanks to its intuitive notions of process and channel.
This setting easily scales up to the analysis of security protocols [144], as pio-
neered by Ryan [141]. The approach is mainly targeted at detecting possible
attacks by the Spy.

The peers are modelled as processes that exchange the protocol messages
via specific channels, thus formally producing new states of the model. This
first specification accounts for no malicious entity, and hence is certainly not
flawed because no one tries to mount attacks. Then, another specification
is obtained by introducing the Spy as a new process that can perform il-
legal operations. A long established proof method is trace equivalence. The
protocol is claimed to suffer no attacks if the two specifications are trace
equivalent, namely if they both reach the same states. Checking this by pen
and paper is long and tedious, so a model checker can be tailored to enumer-
ate the reachable states. There are intrinsic limitations: only finite systems
of reasonably small size can be tackled. They typically account for at most
three or four agents, including the Spy. But various recent techniques such
as symbolic model checking [116] have been developed throughout the years
as an attempt to overcome this limitation. More recently, the concept of cor-
respondence assertion [167] has also been used in this context, especially to
prove authentication properties [142]. Another proof method relies on rank
functions [142].

Lowe has had successful results with the model checker FDR [139] and
with an abstract language called Casper [110] that can be easily compiled into
CSP. He has discovered a number of attacks [108, 112]. Other model checkers
such as ASTRAL [68], Brutus [62, 63], Murphi [74, 123] and SPIN [19] to just
mention a few, have been tailored to protocol verification obtaining perhaps
less seminal findings. Recent work by Basin et al. [20] must be mentioned
here, as it makes significant improvements over traditional model checking
techniques. Infinite elements are represented using lazy datatypes: construc-
tors that build datatypes without evaluating their arguments. The potentially
infinite messages that the Spy can introduce are treated using a dedicated

24 2. The Analysis of Security Protocols

symbolic representation. The resulting method is tested on a number of clas-
sical protocols and on simplified versions of a few real protocols [21]. Also
SAT-based techniques have lately boosted the efficiency of model checkers
for protocol analysis [11, 16]. In terms of specification, the new techniques
often recast the protocol models as planning problems. In terms of verifica-
tion, they borrow algorithms previously developed for the problem of boolean
satisfiability.

In conclusion, if we look at research spanning nearly two decades now, it
seems fair to state that the combined use of state enumeration with model
checking has significantly contributed to advancing the entire protocol verifi-
cation field. However, if a system of limited size does not suffer any attacks,
it is not in general obvious that neither does a system of arbitrary size. This
result has been proved ad hoc for a specific protocol by pen and paper [111],
while another tool, the NRL Protocol Analyzer [118], also allows mechanised
proofs by induction that certain states are out of reach.

2.1.7 Strand Spaces

Another important approach [79] rests on the notion of strand: a record of a
protocol history from the viewpoint of a single peer. Therefore, a strand is
the sequence of events (message sending or receiving) concerning a peer of a
protocol. This differs from our notion of trace, given in the next chapter, which
records an entire protocol history from the viewpoint of an external observer,
and therefore features events pertaining to a variety of agents. A strand space
is an unspecified set of strands, some for the agents of the network, some for
the Spy. As can be expected, while the strands formalising the Spy’s illegal
behaviour are independent from the protocol being specified, those for the
protocol peers are not.

The notions of fresh or unguessable components are elegantly modelled as
constraints on the construction of strands. For example, there exists no strand
in which the Spy sends an unguessable component prior to its reception. More
important for verification purposes is the notion of bundle, a set of traces that
are sufficiently expressive to formalise a protocol session. Therefore, certain
strands of a bundle send messages, and other strands receive them. These
must be bundled with the Spy’s strands to form a new bundle modelling a
realistic scenario where the protocol messages can be overheard and prevented
from reaching their intended recipients. Proofs are carried out by induction
on a bundle and their philosophy is reasonably easy to grasp. The treatment
is originally carried out by pen and paper and applied to three classical
protocols: Needham-Schroeder [79], Otway-Rees and Yahalom [78].

Studying the authentication goal within this context produces the concept
of authentication test [77]. It is a formalisation of the simple authentication
strategy that sees an agent issue a fresh value and send it over the net-
work. Freshness here assures that the probability that other agents know the
value without somehow receiving it from the network is negligible. Therefore,

2.2 Interpreting the Findings 25

should the sender ever get that value back, he would authenticate the context
with which he associated it in the first place. This test is used to study what
form of authentication a large class of protocols attains. The strand-space ap-
proach is also tried out for the computational analysis of security protocols
over the Diffie-Hellmann key-agreement scheme [91] and, more recently, for
reasoning about the trust assumptions that the protocol participants silently
make [89]. Strands are annotated with formulae of a simple logic that for-
malises trust management, resulting in the first promising initiative to conju-
gate trust management and protocol analysis. Temporal logic can assist with
the verification methodology [59], while machine support currently is under
development [88, 124].

2.2 Interpreting the Findings

We discuss some findings derived from the formal analyses of well-known
protocols. Some of the corresponding formal notation is quoted for the sake
of demonstration. The only exception is the discussion about the Woo-Lam
protocol: it arises from informal reasoning, which remains a useful approach
to protocol analysis.

2.2.1 TMN

Let us consider the TMN protocol [153], which aims at distributing session
keys for mobile communications (Figure 2.1).

1. A → S : A, S, B, e(KA)

2. S → B : S, B, A

3. B → S : B, S, A, e(KB)

4. S → A : S, A, B, v(KA, KB)

Fig. 2.1. TMN protocol

The identifiers A, B, KA, KB , abd S respectively represent the proto-
col initiator, the responder, the keys they choose and the trusted Server;
the unary constant e() denotes a standard encryption function that only
the Server is able to invert, and the binary constant v() stands for bit-wise
exclusive-or (Vernam encryption).

Nothing protects the messages, so, while intercepting them, the Spy can
read and modify any components. The protocol fails to enforce agent authen-
tication. The Spy may send the Server a fake instance of the first message
using a key chosen by herself rather than by A, and complete the protocol
with B. Even if A has not taken part in the session with B, both B and

26 2. The Analysis of Security Protocols

〈fake.Msg1.A.S.B.Encrypt.KC ,

comm.Msg2.S.B.A,

comm.Msg3.B.S.A.Encrypt.KB,

intercept.Msg4.S.B.A.Vernam.KC .KB,

resp fake session.A.B.KB〉
Fig. 2.2. Authentication attack on TMN protocol: CSP notation

the Server will believe that the opposite is true at completion of the session.
Precisely, B will rely on the key KB for communicating with A.

This scenario [112, Attack 4.1], which can be spotted also while reasoning
informally, is fairly easy to interpret. Its formalisation as a list of CSP events
is demonstrated in Figure 2.2 and seems intuitive. It sees the Spy send the
first message on the channel fake, while the second and third messages are
issued legally and travel on the channel comm. Finally, the Spy prevents
the delivery of the fourth message to A on the channel intercept, while B
erroneously concludes that he shares the key KB with A.

Similarly, the Spy may intercept the second message, replace B’s identity
with hers in the third, and include in it a key chosen by herself rather than
by B [112, Attack 4.2]. As a result, both A and the Server would believe
that B took part in the session, and A would erroneously think that the key
invented by the Spy is shared with B.

2.2.2 Woo-Lam

The Woo-Lam protocol [166] aims at authenticating the initiator to the re-
sponder (Figure 2.3). According to a standard notation, Ka in general in-
dicates A’s long-term key shared with the Server, while Nb stands for the
nonce issued by B. Authentication here merely means active presence in the
network.

1. A → B : A

2. B → A : Nb

3. A → B : {|Nb|}Ka

4. B → S : {|A, {|Nb|}Ka |}Kb

5. S → B : {|Nb|}Kb

Fig. 2.3. Woo-Lam protocol

After B receives, encrypted, the nonce that he issued for A, he forwards it
to the Server quoting A’s identity. The Server extracts the nonce, ultimately
using A’s shared key, and returns it to B. This convinces B that the nonce
was encrypted using A’s key, which hence implies A’s presence. The protocol

2.2 Interpreting the Findings 27

does not attempt to convince B that A indeed meant to communicate with
him, which would be a stronger form of authentication (§4.6).

1. C → B : A

1′. C → B : C

2. B → A : Nb

2′. B → C : Nb′

3. C → B : {|Nb|}Kc

3′. C → B : {|Nb|}Kc

4. B → S : {|A, {|Nb|}Kc |}Kb

4′. B → S : {|C, {|Nb|}Kc |}Kb

5. S → B : {|Nb′′|}Kb

5′. S → B : {|Nb|}Kb

Fig. 2.4. Authentication attack on Woo-Lam protocol

Abadi and Needham point out an attack whereby the Spy impersonates
A when communicating with B [7, §4], which implies that B’s informal rea-
soning given above is flawed. The Spy (indicated by C in Figure 2.4) may
interleave two sessions with B. She uses A’s identity in the first, but acts
on her own behalf during the second session (distinguished by the primes).
During this session, the Spy cheats in the third step using the nonce Nb that
B addressed to A. Therefore, the Server’s reply for the first session contains
a new nonce Nb′′, while the reply for the second session must contain Nb. At
the end, B is misled into believing that he has communicated with A.

However, one may wonder why B is not puzzled by receiving on a session
the nonce that he issued on another session. It must be stressed that no agent
can distinguish to which sessions the received messages belong, unless the
contents of the messages state this. Therefore, receiving the nonce previously
issued for A gives B the required “evidence” of A’s presence although this is
a wrong conclusion.

2.2.3 Public-key Needham-Schroeder

Lowe’s “middle-person attack” [107] on the public-key Needham-Schroeder
protocol [126] is a rather subtle one. It took one and a half decades to be
discovered. The protocol can be found in Figure 2.5. In brief, it exchanges
the nonces Na and Nb in order to mutually authenticate A and B.

Since A receives in the second step the nonce that she encrypted using B’s
public key, she decides that B was alive. Upon reception of his own nonce in
the third step, B draws the same conclusion about A. Lowe employs model
checking techniques to show how the Spy can exploit two interleaved runs
and interpose between the peers so that B believes that his peer is A when it

28 2. The Analysis of Security Protocols

1. A → B : {|A,Na|}Kb

2. B → A : {|Nb,Na|}Ka

3. A → B : {|Nb|}Kb

Fig. 2.5. Public-key Needham-Schroeder protocol

in fact is the Spy [106]. The details of the attack are omitted here as they are
among the most published pieces of research in the field of computer security.

Interpreting the attack may not be trivial. It does not violate authenti-
cation in terms of aliveness (it is true that A is active in the network, as
B believes), but a stronger form of authentication, weak agreement (§4.6),
whereby B should be assured that A intends to communicate with him. The
publication of this attack convinced many that formal methods might be an
effective tool to detect the subtle consequences of session interleaving. More-
over, by showing that the attack can be avoided simply by including B’s
identity in the second step, Lowe points out the importance of explicitness to
protocol messages, later investigated more deeply by Abadi and Needham [7].

Paulson formally verifies [133, §5.4] that, if B sends the second message
to A and someone sends an instance of the third, then B is assured that
A has sent an instance of the first message to someone. This is one of the
strongest relevant guarantees of authentication of A with B (§5.4). However,
it only conveys A’s aliveness from B’s viewpoint, and fails to convey weak
agreement of A with B. It in fact expresses no evidence about A’s putative
wish to communicate with B. The peers’ viewpoints are crucial to realistic
guarantees, as we anticipate in the next section and treat extensively later
(Chapter 5).

2.2.4 Shared-key Needham-Schroeder

Needham and Schroeder also designed a key distribution protocol based on
symmetric encryption [126]. It presupposes that each agent shares a long-term
key with the trusted Server, and is presented in Figure 2.6.

1. A → S : A, B,Na

2. S → A : {|Na, B,Kab, {|Kab, A|}Kb |}Ka

3. A → B : {|Kab, A|}Kb

4. B → A : {|Nb|}Kab

5. A → B : {|Nb − 1|}Kab

Fig. 2.6. Shared-key Needham-Schroeder protocol

A replay attack on the protocol is well known. The Spy may intercept the
certificate sent in the third step and later replay it to B without understand-

2.2 Interpreting the Findings 29

ing its contents. As a result, B may be fooled into accepting an old session
key as fresh.

Paulson proves an important theorem by induction: the protocol guaran-
tees confidentiality of the session key issued by the Server, provided that both
peers’ shared keys are safe from the Spy [33, 34]. We anticipate some formal
syntax here, as we find it mostly self-explanatory; it will be detailed later
(Chapter 3). The main assumption of the theorem requires that the event

Says Server A (Crypt(shrK A){|Na,AgentB,Key Kab, X|}) (2.1)

occur. However, the theorem must be interpreted with care. Can the peers
who are intended to use the session key ever appeal to it? In general, no
agent can verify any events concerning other agents because they take place
at other points in the network. Therefore, the theorem is only applicable
by the Server or by some super-agent who sees all occurring events. It is not
applicable either by A or by B, who cannot inspect the Server’s activity unless
we establish some suitable lemmas on assumptions that they can verify. In
particular, we can prove that, if A’s shared key is safe from the Spy and the
certificate

Crypt(shrK A){|Na,Agent B,Key Kab, X|}

appears in the traffic, then the event 2.1 occurred. Then, Kab is confidential
by application of the previous theorem. The resulting theorem can be applied
by A because, if she ever receives an instance of the second message, the
message was in the traffic.

Similarly, the confidentiality argument can be made useful to B by the
following lemma. If B’s shared key is safe from the Spy and the certificate

Crypt(shrK B){|Key Kab,AgentA|}

appears in the traffic, then the event 2.1 occurred for some Na. Consequently,
when B receives an instance of the third message, he considers the session
key found inside it to be confidential.

Following these considerations, we emphasise that it is the peers running
the protocol who need guarantees that the protocol goals are met. On this
basis, we will develop the principle of goal availability for formal protocol
analysis (Chapter 5). In short, it says that any formal reasoning must be
conducted in terms of assumptions that the protocol participants can ver-
ify. This pays back in terms of protocol insights that would remain hidden
otherwise.

3. The Inductive Method

Formal correctness of security protocols can be established by means
of the Inductive Method with mechanical support from the theorem
prover Isabelle. The protocol goals can be studied over an inductively
defined model using the corresponding induction principle.

The informal way of studying a protocol property is to somehow derive per-
suasive reasoning that all protocol steps preserve the property. If not complex
per se, the process tends to reach unmanageable size because a protocol is
a concurrent program that is executed by an indefinitely large population of
agents. It was exactly the aim of preserving a property through various steps
that inspired the Inductive Method [133]: proving the property formally via
structural induction on an unbounded protocol model.

Let us consider a security protocol, P, and an unlimited population of
agents. To account for some threat model, the agents include a Spy who
monitors the entire network. The Spy also knows the long-term secrets of an
unspecified set of compromised agents, a feature that models some form of
collusion. The network traffic develops according to the actions performed
by the agents while they are executing various sessions of P. Each agent can
interleave an unlimited number of protocol sessions. A history of the network
traffic can be represented by the list of the events that occurred throughout
that history. Such a list is a trace, and is typically built in reverse chronological
order. The set P of all possible traces of unbounded length is a formal model
for the network where P is executed. By misuse of terminology, P is referred
to as the formal protocol model for P. The set P is defined inductively by
specific rules drawn from P. The events occur via the firing of these rules.
Since no rule is forced to fire, no event is forced to occur.

The use of induction in analysing security protocols is also present in the
work of Meadows [118], who combines state enumeration on a system of lim-
ited size with inductive proofs that the system never reaches infinite sets of
states. However, the Inductive Method [133] is entirely inductive. Induction
during the specification phase provides a way to define all relevant message
operators and the protocol model itself. During the verification phase it pro-
vides the proof principle to establish properties of the protocol model. So, we
only verify safety properties; we cannot prove liveness properties, namely that
something will occur. The resulting operational semantics has much in com-

32 3. The Inductive Method

mon with CSP formalisations [142], except that its models are unbounded.
The approach is mechanised by the generic theorem prover Isabelle [130],
which offers strong support for inductively defined sets, efficient simplifica-
tion by conditional rewrite rules and automatic case splits for if-then-else
expressions.

This chapter briefly introduces Isabelle (§3.1) with its theory hierarchy
(§3.2), and then reviews the original version of the Inductive Method prior to
our extensions. We will see a formalisation of the agents running the protocols
(§3.3), of the cryptographic keys (§3.4) and of the compromised agents (§3.5).
Then, we will introduce a formal treatment of the protocol messages (§3.6), of
the protocol events (§3.7) and of the traces of events (§3.8). We will terminate
the chapter with an account of the threat model in which the protocols are
imagined to be executed (§3.9), of the main operators necessary for the formal
treatment (§3.10) and, finally, of the protocol model (§3.11).

3.1 Isabelle

Isabelle is a generic, interactive theorem prover [130]. Generic means that it
can reason in a variety of formal systems. This book refers to the best devel-
oped and most popular version, Isabelle/HOL [128]; it supports higher-order
logic, a typed formalism that allows quantification over functions, predicates
and sets. Hardware and software systems can readily be modelled in higher-
order logic, and correctness properties expressed. Interactive means that it
is not entirely automatic and, rather, requires a good amount of human in-
tervention. But Isabelle also provides much automation. Its simplifier, which
can be invoked by the proof method simp, combines rewriting with arith-
metic decision procedures. Its automatic provers, corresponding to various
proof methods, such as auto, blast and force, can solve most simple proof
scenarios.

Most proofs are conducted interactively. In a typical proof, the user directs
Isabelle to perform a certain induction and then to simplify the resulting
subgoals. Any surviving subgoals might be given to an automatic prover or
be reduced to other subgoals by the use of some lemma. Failure to find a
proof for a conjecture may simply mean that the user is not skilled enough;
otherwise, it may exhibit what in the system being modelled contradicts the
conjecture and hence help in locating a system bug.

The series of commands used to prove a theorem can be seen as a proof
sketch. Confidence that the proof is sound comes from observing the line of
reasoning that we are forced to adopt, and the lemmas we are forced to prove.
Interactive theorem proving is difficult, and this very difficulty strengthens
our confidence that the resulting theorems are true. Conversely, a fully auto-
matic proof may lead to worries that the model of our system is too abstract.
When a theorem has been proved, Isabelle can deliver a formal proof ob-
ject; as automation improves, people will increasingly want to examine these

3.2 Theory Hierarchy 33

proof objects (perhaps using an independent tool) in order to assure them-
selves that the proof is valid.

Security protocols can be modelled using general-purpose tools such as
Isabelle. Once the models have been shown to be useful, researchers will
naturally use them as the basis for specialised protocol verification tools,
which may achieve high performance. Two eminent examples of specialised
tools are Cohen’s TAPS [64], an automatic theorem prover based on first-
order logic, and Blanchet’s ProVerif [51], based on declarative programming.
Isabelle remains useful for modelling novel protocols that are not covered by
the specialised tools.

Isabelle can be freely downloaded from the Internet [157] under the Open
Source Software BSD licence. It is available for most Unix platforms, such as
Linux, MacOS X and Solaris. For Microsoft Windows platforms, it is sufficient
to install a Linux-like environment such as Cygwin (which comes under the
GNU General Public Licence) [155]. Installing Isabelle reduces to unpacking
the relevant files, which include an ML compiler and runtime system, such as
Poly/ML [159] or Standard ML of New Jersey [161], and the latest version
of the Proof General graphical interface [160].

Each distribution of Isabelle comes with a repository of proofs. A new
distribution is released every year to include the latest developments to the
provers and optimisations to the proof scripts installed in the repository. This
is the main reason why this book concentrates on proof concepts and methods
rather than on proof scripts, which are limited to a few examples throughout
the text and some demonstration in the appendices. While scripts are certain
to change over time, methods are not.

All proof scripts about the protocols treated in this book can be found
in the local repository [33] or in the online repository [34] from the 2006
distribution. Before that distribution is released, they are available with the
development snapshot [156]. A profitable way to read this book over the
years is to interactively execute the current proof scripts from the Isabelle
repository while the theorems are presented throughout. The task will be
simplified by total uniformity of theorem names (§1.3.2) between the book
and the proof scripts. It will demonstrate step by step the mechanised support
for our considerations.

3.2 Theory Hierarchy

The process of studying a system begins with the development of an Isabelle
specification of the system. Such a specification is called theory. An Isabelle
theory also contains the theorems that are found to hold for the specifica-
tion, and their proof scripts. Each theorem statement is followed by its proof
script. The user may also decide to retain failed proof attempts that are par-
ticularly instructive. For example, the theory file List.thy contains a simple
specification of the datatype of finite lists, and the definitions of a number

34 3. The Inductive Method

of functions to manipulate lists, such as butlast and concat. The same file
contains theorems expressing various properties of those functions.

Theories can be variously developed on top of each other to form an effec-
tive theory hierarchy. Each theory inherits all structures and theorems that
were developed within its ancestor theories. Figure 3.1 presents the theory
hierarchy that is relevant to this book. It is a fragment (subtree) of the en-
tire theory hierarchy that comes with the Isabelle repository [33, 34]. It was
automatically generated using the isatool command [128].

The theory file Message.thy contains a formal account of the messages that
security protocols exchange, including the main operators to reason about
them. It is a child theory of the HOL database of theories, which itself is
a child of the Pure database. One step down in the hierarchy, we find the
theory file Event.thy, which accounts for the network events, such as sending
a protocol message. Another step down is the file Public.thy, which contains
a formalisation of both symmetric and asymmetric cryptography. It is useful
for protocols that use both techniques, such as the accountability protocols
(Chapter 13); its earlier distributions contained a treatment of asymmetric
cryptography only. These three files terminate the mechanisation of the core
components of the Inductive Method in Isabelle. Observe, however, that the
method itself is technically independent of Isabelle. It could be potentially
mechanised on any mechanical prover or used by pen and paper, though in
the latter case the limits of human intuition would constrain the findings.

The theory file for a protocol bears the name of the protocol or its de-
signers. The protocol theories all lie at the same leaf level in the hierarchy.
They include two with the Gets suffix, indicating that the network event of
receiving a message is included, in contrast with the corresponding theory
names without that suffix, where the reception event is not present. These
theories can be siblings because the current version of Event.thy accounts
for message reception following our developments (§8.2), whereas reception
was not originally available. When there is only one file version, the file itself
indicates whether it includes reception.

It can be observed that, while the theory files ZhouGollmann.thy and
CertifiedEmail.thy for the accountability protocols follow the conventional
hierarchy, smartcard protocols cause a branching point. Theory EventSC.thy

contains an extended set of events to formalise protocol interaction with
smartcards, and it is therefore a sibling of Event.thy. Its child theory named
Smartcard.thy completes the formal account of the cards with a specification
of their stored secrets and of the threats of theft or cloning. The leaf the-
ories ShoupRubin.thy and ShoupRubinBella.thy contain the specification and
verification of two versions of a smartcard protocol.

As mentioned in the previous section, this book refers to Isabelle/HOL,
which implements the higher-order logic formalism. The earlier Isabelle syn-
tax was much in the style of the ML programming language. The recent Isar
syntax [164] allows for a more natural interaction with the prover through a

3.2 Theory Hierarchy 35

M
es

sa
ge

E
ve

nt

P
ub

lic

N
S

_S
ha

re
d

K
er

be
ro

s_
B

A
N

K
er

be
ro

s_
B

A
N

_G
et

s
K

er
be

ro
sI

V
K

er
be

ro
sI

V
_G

et
s

K
er

be
ro

sV
O

tw
ay

R
ee

sB
el

la
Z

ho
uG

ol
lm

an
n

C
er

tif
ie

dE
m

ai
l

E
ve

nt
S

C

S
m

ar
tc

ar
d

S
ho

up
R

ub
in

S
ho

up
R

ub
in

B
el

la

[P
ur

e]

[H
O

L]

Fig. 3.1. Fragment of Isabelle theory hierarchy that is relevant to this book

36 3. The Inductive Method

more readable and intuitive syntax. Most of its constructs seem to be self-
explanatory. For example, it retains the obvious construct for a datatype,
which is of great use with security protocols as it provides a compact and
easily extensible way to define type constructors that are injective and have
disjoint ranges. As we shall see, a datatype can be used to define types agent,
msg and event for respective, crucial elements. Their formal treatment, along
with that for cryptographic keys and for a Spy implementing a threat model,
is conveniently spread across the three main files Message.thy, Event.thy and
Public.thy. However, we prefer to present it more organically and didacti-
cally below, without adherence to the specific theory file but, rather, with
adherence to each specific element.

3.3 Agents

Although finite, the population of agents running a security protocol in the
real world is indefinitely large. Therefore, modelling any limited population
would prevent the protocol model from capturing some potentially realistic
scenarios.

An infinite population can be easily modelled by establishing a bijection
with the set of natural numbers. Given a number i, we indicate the corre-
sponding agent as Friend i. A malicious agent can be modelled by the nullary
constructor Spy, which will be used to formalise a realistic threat model
(§3.9) against which to investigate robustness of a protocol. Most symmetric-
cryptography protocols rely on a trusted third party, the Server, which has
access to all agents’ long-term secrets. It is modelled by Server and often
abbreviated as S. These agents can be compactly introduced as

datatype agent , Server

Friend nat

Spy

In particular, Kerberos IV (Chapter 7) and V (Chapter 9) have two
trusted parties, so the datatype should be extended accordingly, though we
will find a simple heuristic to avoid it (§7.2). “Agents could be interpreted as
humans, machines, or processes” [7, §2]. We prefer the last interpretation as
we do not model the computer architecture between processes and humans. If
a confidentiality guarantee is available to a process, then it is not necessarily
available to the human owner of the process because the Spy could break in
at any architectural level and invalidate the guarantee before it reaches the
human.

3.4 Cryptographic Keys

We assume familiarity with the concepts of encryption and digital signature.

3.5 Compromised Agents 37

The free type key is introduced to formally represent cryptographic keys.
In the symmetric-cryptography setting, each agent is endowed with a long-
term key that is shared with the Server. It is trivially modelled as

shrK : agent −→ key

The same declaration applies to pairs of functions modelling asymmetric
key pairs for encryption, priEK and pubEK, or signature, priSK and pubSK.
When the distinction between the two key pairs is unnecessary, such as with
most classical protocols, one pair of functions is translated into priK and
pubK, and the other one is ignored.

The set symKeys of symmetric keys helps us distinguish between various
keys. In particular, recall that a session key is a fresh symmetric key that
some protocols aim to distribute to their peers and is only valid for the current
session. A session key K can be easily modelled as

K ∈ symKeys and K /∈ range shrK

This clearly presupposes that the symmetric keys can be partitioned into
shared keys and session keys, an assumption met by all experiments con-
ducted thus far. Should other kinds of symmetric keys be on the scene, an
alternative formalisation of session keys would be necessary.

Another function is useful below to define the message operators com-
pactly (§3.10). It is

invKey : key −→ key

and leaves a key unaltered in case it is symmetric; otherwise, it turns
the key into its corresponding asymmetric half. For example, priSK A =
invKey(pubSK A).

3.5 Compromised Agents

A set of compromised agents is introduced. It is an unspecified set bad of
agents who have revealed their respective secrets to the Spy since the be-
ginning of the protocol. Secrets comprise their keys shared with the Server
and their private keys. Compromised agents have another important feature.
They also reveal to the Spy any notes of message components they may take
during the protocol sessions. Trusted servers are always assumed to be un-
compromised, namely not to belong to bad.

It is convenient to state that the Spy belongs to bad. With most protocol
guarantees that only hold for an agent other than the Spy, we tend to assume
that agent to be uncompromised, which automatically rules out the case in
which she is the Spy. This makes the theorem statements generally more
uniform throughout the various chapters.

Only with accountability protocols (Chapters 12 and 13) shall we see that
reliance on the set of compromised agents is too optimistic. With that group

38 3. The Inductive Method

of protocols the peers do not trust each other, and therefore we shall define
the subset of compromised agents that exclude the Spy.

3.6 Messages

The original datatype of messages includes six constructors [132, §3.1]. It is

datatype msg , Agent agent

Nonce nat

Key key

Mpair msg msg

Hash msg

Crypt key msg

The basic constructors allow agent names, nonces and cryptographic keys.
Observe that constructor Agent requires a variable of type agent, which itself
is a datatype (§3.3), while constructor Nonce takes a natural number. Con-
structor Key takes a variable of type key, which was introduced above (§3.4)
as a free type.

The recursive constructors introduce concatenated messages, hashed mes-
sages and ciphers. An n-component concatenated message can be obtained
using the MPair constructor. For brevity, it is indicated as X1, . . . Xn−1, Xn,
external fat braces being omitted according to the notational conventions
seen above (§1.3.1).

The encryption primitive Crypt is used to formalise ciphertexts created
by either symmetric or asymmetric encryption and also to represent digital
signatures. As is customary, encryption is assumed to be perfect: we will
see that there is no rule to extract X from Crypt KX unless K is available
(§3.10). Also, encryption is assumed to introduce enough redundancy to be
collision-free. This obviously does not hold for certain encryption schemes
such as exclusive-or, which would require an alternative formalisation of the
datatype. Guessable numbers are introduced below (§6.1) as an extension to
the original datatype of messages. They serve to model timestamps.

3.7 Events

The Inductive Method initially allows for only two formal events formalising
the acts of sending or noting a message

datatype event , Says agent agent msg

Notes agent msg

3.8 Traces 39

The former requires three parameters: one for the agent who sends the
message, one for the agent who is the intended recipient and one for the actual
message. The latter requires only two parameters: the agent who notes down
the message, and the message itself.

The necessity of the sending event is intuitive, though this may not be
the case with the noting event, which is used when agents need to note down
portions of messages they receive for subsequent use, as is the case with the
analysis of the TLS protocol [134]. Message noting is also used when the
Spy learns a session key because of some agent’s inaccuracy, as we explain
later in this chapter (§3.11). It is of great use to most protocol specifications.
Later, we will introduce a third event to model message reception and derive a
formalisation of agents’ knowledge (§8.2). Additional events will be necessary
for modelling protocols based on smartcards (§10.2).

3.8 Traces

Event lists of any length, which are called traces, are particularly important.
Traces will be the parameter for the construction of the protocol model and
for the verification of its properties (§3.11). A trace can be used to record all
those events occurring during a history of the network while a protocol is in
use, and thus to formalise one possible fate of that protocol.

Says Spy D {|Agent A, Nonce Nc|}

Notes Spy {|Nonce Nc, Key Kcb|}

Notes Spy {|Nonce Nc, Key Kcb|}

Says B C (Crypt (priSK B) {|Nonce Nc, Key Kcb|})

Notes B (Nonce Nc)

Says Spy D (Nonce Na’)

Says C B {|Agent C, Nonce Nc|}

Notes Spy (Nonce Na’)

Says A B {|Agent A, Nonce Na’|}

Says A B {|Agent A, Nonce Na|}

Fig. 3.2. Example trace

Traces are built in reverse chronological order, as we shall see (§3.11), the
most recent event being added at the head. For the sake of demonstration,

40 3. The Inductive Method

let us consider the example trace in Figure 3.2. It counts ten events. The first
event sees A send her identity and a nonce Na to B, who decides to never
reply to A during the very history of the network that the trace models. The
second event sees another attempt by A with another nonce Na ′. Then, we
find an event whereby the Spy overhears a nonce. The fourth event sees C
send his identity and a nonce Nc to B. With the fifth event, the Spy illegally
sends someone else’s nonce, which she noted earlier. After that, an event
records B’s act of noting down the nonce that C sent him. Then, we have
B’s reply to C. The Spy notes down the body of this ciphertext, an event that
occurs twice. (The protocol model lets an event occur an indefinite number
of times. However, if an agent is required to send a fresh nonce, namely one
that has just been created, then the corresponding event can only occur once.)
Finally, the last event in the trace models another illegal event performed by
the Spy.

This trace is built having in mind the example protocol seen above (Fig-
ure 1.1). However, it is important to remark that, to establish whether the
trace really is admissible in the model for the example protocol, we must see
how that model is constructed (§3.11). The protocol model will define all and
the only traces that the protocol under study can produce.

The notation of session keys routinely indicates both the peers that each
key pertains to, but with nonces a single letter indicating only the originator
is preferred when there is no ambiguity. For example, to extend the example
trace with an event whereby C sends a fresh nonce to D, that nonce would
have to be indicated as Ncd . Likewise, Na would be indicated as Nab, then
Nc as Ncb, and Nb as Nbc. We face a similar notational issue when indicating
nonces pertaining to the same peers but to different sessions; here, we merely
add a prime to nonce Na.

3.9 Threat Model

A realistic analysis of security protocols must account for a realistic threat
model, which the protocol goals must withstand. We adopt the standard
threat model due to Dolev and Yao [75]. It defines the most hostile envi-
ronment for the protocols, except for ruling out cryptanalysis. It rests on a
powerful Spy agent, and can be summarised as follows.

1. The Spy is a legitimate agent. She is a legally registered agent like ev-
eryone else; so she is at least capable of legal action. For example, in a
symmetric-cryptography setting, we can imagine that the Spy has her
own long-term key shared with the trusted Server. In an asymmetric-
cryptography setting, she will have her own public key appropriately
certified by an authority.

2. The Spy controls the network traffic. She gets hold of every message that
is sent in the network, and can manipulate it as the next item describes.

3.9 Threat Model 41

Therefore, she can prevent delivery of any message or redirect it to agents
other than the intended recipient. In this setting, confidentiality and
authentication for example become particularly difficult to enforce.

3. The Spy can perform any message operation except cryptanalysis. She
can break up messages into components by splitting up concatenated
ones and opening up ciphertexts sealed with keys that she knows. Using
the learnt components, she can then form new messages at will by con-
catenation and encryption. However, she cannot use any cryptanalytic
technique to derive significant information from ciphertexts of which she
ignores the encrypting key. This is equivalent to assuming encryption to
be perfect.

We can now move on to describe how the Inductive Method formalises
this threat model. In fact, it formalises an extended version by allowing, in
addition to the three requirements introduced here, the Spy to collude with
the set of compromised agents mentioned above (§3.5).

Requirement 1, that the Spy is a legitimate agent, is met by formalising
protocol agents (§3.3) and cryptographic keys (§3.4) as we have seen. It is
also important that the protocol model (§3.11) will allow any agent, including
the Spy, to execute the rules for each legal protocol step.

Meeting requirement 2 requires a formalisation of the Spy’s initial know-
ledge, namely what she knows before any protocol session takes place. For
this purpose, the original formulation of the Inductive Method includes the
function

initState : agent −→ msg set

It also models the initial knowledge of agents different from the Spy because
agent is a datatype (§3.3). However, we will see that before our dedicated
study on agents’ knowledge (Chapter 8), this was not of any use. To under-
stand the function definition, the reader should recall that 8 indicates the
image operator.

1. The Server’s initial knowledge consists of all shared keys, all public keys
and only its own private keys.

initState Server , (Key8 range shrK)∪
{Key (priEK Server)} ∪ {Key (priSK Server)}∪
(Key8 range pubEK) ∪ (Key8 range pubSK)

2. Each friendly agent’s initial knowledge consists of his own shared key and
private keys, and of all public keys.

initState (Friend i) , {Key (shrK (Friend i))}∪
{Key (priEK (Friend i))} ∪ {Key (priSK (Friend i))}∪
(Key8 range pubEK) ∪ (Key8 range pubSK)

42 3. The Inductive Method

3. The Spy’s initial knowledge consists of all compromised agents’ shared
keys and private keys, and of all public keys. Since the Spy is assumed
to be compromised (§3.5), by this definition she knows her own keys.

initState Spy , (Key8 shrK8 bad)∪
(Key8 priEK8 bad) ∪ (Key8 priSK8 bad)∪
(Key8 range pubEK) ∪ (Key8 range pubSK)

This terminates the formalisation of the static knowledge that agents pos-
sess before engaging in any protocols, but we still have not met requirement
2 of the implementation of Dolev-Yao’s threat model.

No formalisation of agents’ dynamic knowledge was available in the orig-
inal version of the Inductive Method; we shall formalise it later (Chapter 8).
However, only the Spy’s dynamic knowledge, which she obtains from inspect-
ing protocol traces, was formalised. In brief, we require the Spy to know her
initial state, any message ever sent by anyone and any message ever noted
by a compromised agent. The function

spies : event list −→ msg set

formalises the Spy’s dynamic knowledge acquired from a protocol trace. Re-
call that # formalises the list cons operator, hence Says A B X# evs for ex-
ample is the trace whose first event is A’s sending X to B and the rest is a
subtrace evs. The function spies can be easily defined by primitive recursion
as follows.

0. The Spy’s initial state is known to her on any trace, including the empty
one.

spies [] , initState Spy

1. Any message sent by anyone in a trace is known to the Spy on that trace.

spies ((Says A B X) # evs) , {X} ∪ spies evs

2. Any message noted by a compromised agent in a trace is known to the
Spy on that trace.

spies ((Notes A X) # evs) ,

{
{X} ∪ spies evs if A ∈ bad

spies evs otherwise

It can be seen that spies evs contains the entire network traffic that oc-
curred during the history recorded by evs (it actually is a larger set as it
contains some notes) and therefore will be often addressed as traffic on evs.
By appropriately referring to this set, we meet requirement 2, that the Spy
control the network traffic.

Meeting requirement 3 of the implementation of Dolev-Yao’s threat model
requires the implementation of suitable message operators, which we prefer
to treat separately in the next section.

3.10 Operators 43

3.10 Operators

Three operators are introduced to manage sets of messages, all sharing the
same declaration

analz, synth parts : msg set −→ msg set

The first operator formalises the act of breaking up messages into their
components. If H is a set of messages, then analz H can be defined inductively
as follows.

0. Any element of a given message set can be analysed from it.

X ∈ H =⇒ X ∈ analzH

1. The first component of a concatenated message that can be analysed
from a given message set can be itself analysed.

{|X, Y |} ∈ analzH =⇒ X ∈ analzH

2. The second component of a concatenated message that can be analysed
from a given message set can be itself analysed.

{|X, Y |} ∈ analzH =⇒ Y ∈ analzH

3. The body of a ciphertext that can be analysed from a given message set
can be itself analysed provided that the encrypting key can be analysed
too.

[|Crypt KX ∈ analzH; Key(invKeyK) ∈ analzH |] =⇒ X ∈ analzH

The set analz(spies evs) is particularly important. It is the set of all mes-
sage components that the Spy can derive from the observation of the traffic
in the trace evs. According to the definition of analz, those components are
obtained by decomposing concatenated messages and opening up ciphertexts
using keys that become recursively available. But no ciphertext can be opened
without the corresponding key. Therefore, we use

X /∈ analz(spies evs)

to formally state confidentiality of X in the trace evs.
The operator synth formalises the act of building up new messages from

known components. If H is a set of messages, then synth H can be defined
as follows.

0. Any element of a given message set can be synthesised from it.

X ∈ H =⇒ X ∈ synthH

1. Any agent name can be synthesised from any message set.

AgentA ∈ synthH

44 3. The Inductive Method

2. If a message can be synthesised from a given message set, then so can its
hash.

X ∈ synthH =⇒ Hash X ∈ synthH

3. If two messages can be synthesised from a given message set, then so can
their concatenation.

[|X ∈ synthH; Y ∈ synthH |] =⇒ {|X, Y |} ∈ synthH

4. If a key belongs to a given message set and a message can be synthesised
from it, then so can the encryption of the message with the key.

[|Key K ∈ H; X ∈ synthH |] =⇒ Crypt KX ∈ synthH

Observe that, while rule 1 makes all agent names trivially available for
the Spy to form new messages, no analogous rule does that for nonces. Hence,
nonces remain unguessable for the Spy. The set synth(analz(spies evs)) con-
tains all messages that the Spy can synthesise by concatenation and encryp-
tion using components derived from the traffic on evs. It meets requirement
3 of the implementation of Dolev-Yao’s threat model (§3.9), that the Spy can
perform any message operation except cryptanalysis.

The operator parts extracts all components from a given set of messages
by projection and decryption. Given a set H, the set parts H can be defined
as follows.

0. Any element of a given message set is a component of the given message
set.

X ∈ H =⇒ X ∈ parts H

1. The first component of a concatenated message that is a component of a
given message set is itself a component of the given message set.

{|X, Y |} ∈ parts H =⇒ X ∈ parts H

2. The second component of a concatenated message that is a component
of a given message set is itself a component of the given message set.

{|X, Y |} ∈ parts H =⇒ Y ∈ parts H

3. The body of a ciphertext that is a component of a given message set is
itself a component of the given message set.

Crypt KX ∈ parts H =⇒ X ∈ parts H

The definitions of analz and parts are similar. However, contrarily to the
former, the latter does not require the encrypting key to extract the body
of a ciphertext; hence, parts somewhat formalises unlimited computational
power. Thus, given a message X and a trace evs,

X ∈ parts(spies evs)

3.11 Protocol Model 45

signifies that X appears in the traffic on evs, possibly as a component of a
larger message. A simple fact involving these two operators is

analzH ⊆ parts H

and it can be easily proved. When H is the traffic in a trace, the theorem
signifies that the traffic components that are available to the Spy on evs form
a subset of all traffic components.

Another important concept for security protocols is freshness. For exam-
ple, when an agent has to issue a nonce or a session key, it is good security
practice to generate a fresh one, namely one that has never been used before,
so that it cannot collide with any other keys. We introduce the function

used : event list −→ msg set

formalising the set of all message components that either belong to some
agent’s initial knowledge or appeared on some trace. It can be defined by
primitive recursion as follows.

0. All components of any agent’s initial state are used on any trace, includ-
ing the empty one.

used [] ,
⋃

B. parts(initState B)

1. All components of a message sent in a trace are used on that trace.

used((Says A B X) # evs) , parts{X} ∪ used evs

2. All components of a message noted in a trace are used on that trace.

used((Notes A X) # evs) , parts{X} ∪ used evs

Freshness of a message m in a trace evs can be formalised by m /∈ used evs.

3.11 Protocol Model

The formal protocol model is a set of lists of events, namely a set of traces,
and is unbounded because so are Isabelle lists. It contains all traces such that
each formalises a possible history of the network while the protocol is in use.
Since it is defined inductively, we remark that it contains any possible trace
induced by the protocol, including the most peculiar ones such as a trace
that sees a single agent initiate a large number of protocol sessions but no
replies at all.

The base case of the definition states that the empty trace belongs to the
set. Then, each inductive rule formalises a protocol step. More precisely, it
states how to extend a given trace of the set by the event formalising the
protocol step. If a protocol has n steps, its model at least has n inductive
rules, each introducing a Says event.

46 3. The Inductive Method

Another rule called Fake lets the Spy send all messages that she can fake:
if evs is a trace of the set, then also the concatenation of Says Spy B X with
evs must be a trace of the set; here, X is taken from synth(analz(spies evs)), a
set we have discussed in the previous section. Hence, this rule contributes to
the implementation of Dolev-Yao’s threat model. When analysing smartcard
protocols (Chapter 11) or second-level protocols (Chapter 13), we will see
that an extra rule is required to model the Spy’s activity. That rule will
extend the threat model by allowing the Spy to construct a session key out of
known components using a public algorithm. A similar concept can be found
in the inductive analysis of TLS [134].

An important extra rule will be used to model security protocols that dis-
tribute a session key. Called Oops, it models an agent’s loss, either deliberate
or not, of a session key to the Spy. The rule introduces an event, referred
to as an oops event below, whereby the Spy notes down the session key by
a Notes event. This makes it possible to investigate how local breaches of
security can affect the global security. We shall see various forms of such a
rule throughout this book.

1. A −→ B : A,Na

2. B −→ A : {|Na, Kab|}
sK−B

Nil :
[] ∈ dsp

Fake :
[[evsF ∈ dsp; X ∈ synth(analz(spies evsF))]]
=⇒ Says Spy B X # evsF ∈ dsp

DSP1 :
[[evs1 ∈ dsp; Nonce Na /∈ used evs1]]
=⇒ Says A B {|Agent A, Nonce Na|} # evs1 ∈ dsp

DSP2 :
[[evs2 ∈ dsp; Key K /∈ used evs2; K ∈ symKeys;

Says A’ B {|Agent A, Nonce Na|} ∈ set evs2]]
=⇒ Says B A (Crypt (priSK B) {|Nonce Na, Key K|}) # evs2 ∈ dsp

Oops :
[[evsO ∈ dsp;

Says B A (Crypt (priSK B) {|Nonce Na, Key K|}) ∈ set evsO]]
=⇒ Notes Spy {|Nonce Na, Key K|} # evsO ∈ dsp

Fig. 3.3. Example protocol and corresponding inductive model

3.11 Protocol Model 47

For the sake of demonstration, Figure 3.3 shows a demo security protocol
along with its inductive model. The protocol sees an initiator send her identity
and a fresh nonce to a responder, who replies by encrypting the nonce and a
fresh session key with his private signature key.

The constant dsp denotes the inductive model of the demo security pro-
tocol. It is defined by five rules that indicate which traces the protocol can
produce. Rule Nil sets the base of the induction stating that the empty trace
belongs to the protocol model. Rule Fake, as explained, allows the Spy to
generate fake messages using material gleaned from past traffic, and to send
it to anyone.

The postcondition of each inductive rule confirms that traces are built in
reverse chronological order because new events are added at the head of the
given trace. Also, it can be seen that each rule refers to a generic trace; for
example, Fake refers to evsF , DSP1 refers to evs1 , and so on. Because there
is no bound between variables of different rules, the trace names could have
been identical. However, with long proofs especially, the use of typical trace
variable names helps us identify which rule each subgoal arises from.

Rule DSP1 specifies the first protocol step, whereby A chooses a fresh
nonce and sends it to B. The rule follows the usual inductive pattern: given a
trace evs1 of the protocol model, then its extension with the event formalising
the first step of the protocol is still a trace of the protocol model. Observe
the implementation of freshness of the nonce in terms of the function used.
The rule has very few preconditions, which signifies that anyone can initiate
a protocol session with anyone else at anytime, provided that she can access
the random number generator to issue a fresh nonce.

Rule DSP2 models the second protocol step, which is inherently condi-
tional: if anyone sent B an instance of the first message, then B replies with
the second. The rule follows this conditional structure by having the event
modelling the first step of the protocol among its preconditions. Precisely,
DSP2 states that, if any A′ sent B a suitable message during the protocol
history that evs2 models, then B signs the nonce just found and a fresh
session key and sends the outcome to A. He cannot verify that the message
came from A because the originator of a message is never obvious under our
threat model, but replies to the agent named by the first component of the
received message. We will not formalise message reception until later (§8.2).
Observe the implementation of a fresh session key.

Our demo protocol distributes a session key, so we define an Oops rule.
It states that whenever B issues a session key, with the event formalising the
second step of the protocol, the Spy can note it down along with the nonce
corresponding to the same session. If we recall the definitions of spies and
of analz from the previous section, it is clear that on any trace evs in which
the Oops rule fires, we have that both the session key and the corresponding
nonce belong to analz(spies evs).

48 3. The Inductive Method

Having seen all protocol rules, it is clear that not every conceivable trace
belongs to the protocol model. For example, no trace where an agent other
than the Spy notes down a message does, because no rule introduces such
an event. In consequence, the example trace seen above in Figure 3.2 does
not belong to the inductive model of our example protocol as it stands. If
we want to transform it, as an exercise, into an admissible trace, we must
certainly prune it of event Notes B (NonceNc). Also, no rule allows the Spy
to note down a single nonce; hence, event Notes Spy (NonceNa ′) must be
deleted too. This means that the Spy never learns nonce Na ′. Therefore,
event Says Spy D (NonceNa ′) is not admissible also because the Spy cannot
perform it even when acting legally, namely in accordance with rules DSP1
and DSP2. Figure 3.4 presents the result of our exercise: a trace that belongs
to the model of our example protocol. It can be seen that each event can
be introduced by one of the inductive rules defining the protocol model. For
example, the last event is introduced by the Fake rule.

Says Spy D {|Agent A, Nonce Nc|}

Notes Spy {|Nonce Nc, Key Kcb|}

Notes Spy {|Nonce Nc, Key Kcb|}

Says B C (Crypt (priSK B) {|Nonce Nc, Key Kcb|})

Says C B {|Agent C, Nonce Nc|}

Says A B {|Agent A, Nonce Na’|}

Says A B {|Agent A, Nonce Na|}

Fig. 3.4. Example trace belonging to the inductive model of the example protocol

In terms of verification of properties, it is useful that the properties of
an inductively defined set can be established by the corresponding induction
principle: each putative fact must be verified against all rules defining the set.
This generates long case analyses, which Isabelle helps to solve mechanically.
A property of the set typically attempts to formalise some protocol goal, as
we will discuss extensively in the next chapter.

4. Verifying the Protocol Goals

Several goals of security protocols, which are only part of the overall
security of a system, are discussed along with the strategies to prove
them using the Inductive Method. However, a few extensions are nec-
essary to deal with additional though fundamental protocol goals.

Security protocols cover a large spectrum of applications, ranging from e-mail
to banking services, and are intended to achieve a number of goals that de-
pend on the specific application. Today, we take it for granted that “security
is not a simple boolean predicate” [12] although this has not always been
obvious. Security can be thought of as a conjunctive normal form formula.
Only some of its conjuncts represent protocol goals, while the remaining ones
embody properties of the entire system that adopts the protocol. Devising
the right “security formula” for a specific application is matter of open re-
search. It is not obvious how many and which conjuncts the security formula
should have. For example, many LANs have suffered breaches of security
due to badly configured firewalls and of some important secrets saved in the
clear on internal workstations. Those secrets were appropriately protected
by established security protocols whenever they were sent over the network.
However, external attackers managed to read the secrets from the worksta-
tions by merely trespassing the firewall. This demonstrates that security is a
concept that spreads across multiple vertices of a communication architecture
and multiple levels of each vertex.

Even verifying whether a single conjunct of a putative security formula
holds may be a challenging task. In particular, only at the beginning of the
last decade was attention devoted to the conjuncts representing the goals of
security protocols through the use of formal methods. For example, an agent
may need evidence that a received message is reliable in all its components
(integrity), or that the same session key cannot be received within two dif-
ferent messages (unicity), or that his peer is indeed meaning to communicate
with him (authentication).

The Inductive Method, introduced in the previous chapter, supports a
scrupulous formal account of these properties. This chapter completes the
presentation of the method by explaining how it copes with the main secu-
rity goals. First, it comments on how to verify the reliability of the protocol
model by means of suitable theorems (§4.1) and introduces the regularity

50 4. Verifying the Protocol Goals

lemmas (§4.2). Then, it discusses the goals of authenticity, stressing its cor-
relation with integrity (§4.3). It moves on to unicity (§4.4), confidentiality
(§4.5), authentication (§4.6) and key distribution (§4.7). The strategies for
proving these goals with the help of the theorem prover Isabelle are presented
throughout, along with a few limitations of the original Inductive Method
that become clear along the way. The treatment here is as general as possi-
ble, though it is often necessary to refer to specific protocol theorems. There
are also a few references to the concept of an agent’s minimal trust, which
prepares the ground for the principle of goal availability; both concepts are
treated separately in the next chapter.

4.1 The Reliability of the Protocol Model

The problem of how close a model is to the system it should represent af-
fects any formal verification. If a model is oriented to the formal establish-
ment of guarantees (theorems), then suitable reliability theorems can high-
light whether it suffers any discrepancies with the real system or, rather,
whether it behaves as it is expected to. Although these theorems may not
address any protocol goals directly, they can dramatically increase the real-
world significance of any other theorems proved subsequently of the model.
For example, special reliability theorems establish properties that hold until
a certain event takes place in a trace. For this purpose, we shall define the
function before in this section.

The theorems that fall under this category cannot be enumerated exhaus-
tively, as new ones may arise from specific protocols to analyse. Many ba-
sic results available with theory files Message.thy, Event.thy and Public.thy

(Figure 3.1) certainly count as reliability theorems. For example, if the Spy
has obtained a set H of messages from the observation of the traffic, she
may extract message components from them by decomposing concatenated
messages and decrypting the ciphers sealed with known keys. This process
can be iterated until there are no more concatenated messages and no more
intelligible ciphers. In the real world, at this stage, the Spy cannot acquire
new knowledge by repeating the previous process. The model conforms to
this, as the analz operator, which performs the complete message analysis,
can be proved to be idempotent: analz(analzH) = analzH.

Another important reliability result states that a cryptographic key that
is fresh in a trace is certainly not a long-term (shared) key. This assures us
that when a fresh key is generated, it cannot clash with any agent’s shared
key. Indeed, the probability of this happening in the real world is negligible.

A possibility property [133, §4.1] states that the protocol model contains a
trace in which the event formalising the last step of the real protocol occurs.
This form of weak liveness must be considered as a reliability theorem because
it signifies that the model allows completion of the protocol.

4.1 The Reliability of the Protocol Model 51

Other theorems of this class state that if an agent other than the Spy
sends a certain message of the protocol, then the components of the message
can be specified with certainty. Indeed, these agents act in the real world
according to known, predefined rules. For example, the Server of the shared-
key Needham-Schroeder protocol (Figure 2.6) can be proved to send only well-
formed messages [33, 34]. If evs is a trace of the protocol model containing

Says Server A (Crypt K ′{|Na,AgentB,Key Kab, ticket |})

then

K ′ = shrK A and Kab 6∈ range shrK and
ticket = Crypt(shrK B){|Key Kab,AgentA|}

The full proof script consists of three Isabelle commands: the first makes
the event of the assumption a premise of the inductive formula, the second
applies induction, and the third simplifies all subgoals. It comes with the the-
ory file NS Shared.thy (Figure 3.1). However, this theorem does not guarantee
that the Server’s operation is entirely reliable. For example, it is not clear
whether the issued session key is fresh as it should be. To investigate this
formally, we declare the function

before : [event, event list] −→ event list

so that before ev evs yields the subtrace of events that occur in the trace
evs before the introduction of the event ev . Since all traces are extended in
reverse, the head of a trace contains the most recent events. So, the definition
scans the trace evs reversed through function rev, and collects its elements
until ev is found through function takeWhile

before ev on evs , takeWhile(λz.z 6= ev)(rev evs)

Functions rev and takeWhile come from the theory file of lists List.thy [33,
34]. On the assumptions of the previous theorem, we have proved that the
session key is fresh when the Server issues it, formally that

Key Kab 6∈ used(before

(Says Server A (Crypt K ′{|Na,AgentB,Key Kab, X|}))
on evs)

which completes the argument about the reliability of the model Server. The
proof requires two general subsidiary lemmas, one stating that the set of
elements used in a trace is the same as the set of elements used in the reversed
trace, the other stating that, if an element is used on a subtrace, then it is
also used in the trace from which the subtrace is derived.

When verifying protocols based on smartcards (§11.3.1), we will prove
that any agent other than the Spy can use only his own smartcard, provided
that it has not been stolen by the Spy. By contrast, the Spy can use both her
own card and a set of compromised cards. These are also reliability theorems.

52 4. Verifying the Protocol Goals

Proving a theorem of this class is not difficult. The idempotence of analz
is easily derived from its definition, while the possibility property is proved
by “joining up the protocol rules in order and showing that all their precon-
ditions can be met” [133, §4.1]. All remaining theorems, strictly depending
on the specific protocol being verified, necessitate induction over the proto-
col rules. Then, the simplifier either terminates all subgoals or, alternatively,
highlights the structure of the remaining ones. On these occasions, Isabelle’s
proof method auto, which combines simplification and classical reasoning,
often concludes the proof.

4.2 Regularity

Broadly speaking, regularity lemmas are facts that can be proved for a mes-
sage that appears in the traffic [133, §4.3]. Precisely, if a trace evs of the
protocol model is such that

X ∈ parts(spies evs)

then some facts can be proved about X and evs. Such a broad definition
includes many of the theorems proved for a protocol model. In particular, it
includes the theorems formalising the goals of authenticity and authentication
(§§4.3 and 4.6). We take a more restrictive view, and address as regularity
lemmas only the key regularity ones.

A key regularity lemma holds for a long-term key that a protocol never
sends in the traffic. Formally, given a trace evs of the protocol model, an
agent’s key appearing in the traffic on evs implies that the agent is compro-
mised. The implication considers the fact that it must have been the Spy who
sent the key in the traffic because the owner is assumed to never do so. The
proof applies induction and shows that the key could appear in the traffic
only in the Fake case, namely when it is the Spy who uses it, because the key
owner is compromised. By definition of initState, spies and parts, the same
result holds in the opposite direction regardless of the protocol being anal-
ysed. Combining the two implications, the key regularity lemma for shared
keys reads as

Key(shrK A) ∈ parts(spies evs) if and only if A ∈ bad

The same lemma is even more relevant if expressed in terms of analz as

Key(shrK A) ∈ analz(spies evs) if and only if A ∈ bad

The left-to-right implication holds because of analzH ⊆ parts H and the key
regularity lemma; the opposite implication holds by definition of initState,
spies and analz. Its importance lies in translating a condition that an agent
is certainly not able to verify — the Spy’s learning his key from the analysis

4.3 Authenticity 53

of the traffic — into one that he can verify (Chapter 5) — his being com-
promised. In other words, the lemma says that the Spy learns a shared key
from analysing the traffic induced by the protocol if and only if she knows
it initially. For example, let us consider a certificate meant for A and sealed
with her shared key. If we want to prove any properties about the certificate,
then it must be tamperproof against the Spy. This in turn requires A’s key
not to be available to the Spy, which, by the regularity lemma, is equivalent
to A’s being uncompromised.

We remark that regularity lemmas can be proved for any long-term keys
or secret nonces that are never sent in the traffic. For example, a suitable
form holds for smartcard keys with most smartcard protocols (§11.3.2), and
of private signature or encryption keys with most accountability protocols
(§13.2.2).

4.3 Authenticity

If a message that appears to have originated with a certain agent did indeed
originate with that agent, then the message enjoys authenticity. The ISO Se-
curity Architecture framework [93] distinguishes authenticity from integrity,
which holds for a message that is proved to be received in the same form as
the one in which it was generated.

However, many researchers consider the source of a message as an essential
part of the message. Therefore, verifying that the message is unaltered when
it is received (integrity) confirms its originator (authenticity). Conversely,
verifying the originator of a message that is received also confirms that the
message is unaltered. To this extent, the two properties may be considered
equivalent.1

Our proofs support this viewpoint. For example, let us consider the ticket
{|Kab, A|}Kb of the shared-key Needham-Schroeder protocol (Figure 2.6),
which is created by the Server. The integrity of the ticket is equivalent to
preventing the Spy from learning Kb and thus, via the regularity lemma, to
B’s being uncompromised. Under this assumption, the ticket can be proved
to have originated with the Server, and hence it is authentic [33, 34]. So, the
ticket integrity implies its authenticity.

The converse also holds: if the ticket integrity fails, then so does the ticket
authenticity. Let us assume that integrity fails. It follows that the Spy knows
Kb and then, by the regularity lemma, that B is compromised. Trying to
prove authenticity in this scenario leaves the subgoal in Figure 4.1, which
arises from the case Fake.

The second and third assumptions signify that, although the ticket does
not appear in the traffic, the Spy can synthesise it from the analysis of that
traffic. The symbolic evaluation of synth at this stage says that two cases
1 Private conversation with Dieter Gollmann.

54 4. Verifying the Protocol Goals

[[evsF ∈ ns_shared; B ∈ bad;
Crypt (shrK B) {|Key Kab, Agent A|} 6∈ parts (spies evsF);
Crypt (shrK B) {|Key Kab, Agent A|} ∈ synth (analz (spies evsF))]]

=⇒ ∃ Na. Says Server A
(Crypt (shrK A) {|Na, Agent B, Key Kab,

Crypt (shrK B) {|Key Kab, Agent A|}|})
∈ set evsF

Fig. 4.1. Proving ticket authenticity without ticket integrity for shared-key
Needham-Schroeder: failed

are possible. Either the Spy merely forward the ticket that she obtains from
the analysis of the traffic, namely the ticket belongs to analz(spies evsF); or
the Spy handle all components necessary to forge the ticket. The former case
is impossible because it contradicts the second assumption of the subgoal,
following analzH ⊆ parts H. According to the latter case, simplification and
the regularity lemma transform the third assumption in the pair

Key Kab ∈ analz(spies evsF) and B ∈ bad

The resulting subgoal can be falsified because it assumes a non-contradict-
ory scenario in which an agent and a session key are compromised to the Spy.
The proof of ticket authenticity fails: the Spy can forge the ticket before the
Server issues it legally.

In light of these considerations, we will regard authenticity and integrity
as a single concept denoted by the former term. Also, when proving message
authenticity, we will in general make the assumptions that appear to prevent
the Spy from faking the message, and will attempt to enforce the event cor-
responding to the protocol step that creates the message. If we are dealing
with a certificate sealed with a long-term key, then, by application of the
corresponding regularity lemma, it will suffice to assume that the key owner
is uncompromised. However, further assumptions may be required to inves-
tigate the authenticity of specific message components such as the “pairkey”
used by the Shoup-Rubin protocol (§11.3.3).

The introduction of message reception (§8.2) will allow for a more realistic
formalisation of the authenticity theorems from the agents’ viewpoints, as
prescribed by the principle of goal availability, introduced in the next chapter.

4.4 Unicity

Security protocols often involve the creation of fresh components such as
nonces or session keys. A fresh nonce can be used to uniquely identify a
protocol session, while a fresh session key shall not be used beyond the current
session.

It follows that freshness is somewhat a synonym with unicity. Precisely,
a fresh message component is uniquely bound to its message of origin. This

4.4 Unicity 55

observation inspired the unicity theorems [133, §4.4]. In its original formu-
lation, a typical unicity theorem establishes that, if two events containing a
fresh message component occur, then the events are identical. Various theo-
rems of this form will be presented throughout this book, pertaining to either
nonces or session keys. We also advance a novel formulation indicating that
the event containing a fresh message component cannot occur more than
once. It relies on the predicate Unique, introduced below.

To begin with an example of the original formulation, let us consider the
Yahalom protocol (Figure 8.8) It requires the Server to issue a fresh session
key Kab for two peers A and B [135]. So, if evs is a trace of the Yahalom
model containing the events

Says Server A {|Crypt(shrK A){|Agent B,Key Kab,Na,Nb|}, X|} and
Says Server A′ {|Crypt(shrK A′){|Agent B′,Key Kab,Na ′,Nb′|}, X ′|}

then

A = A′ and B = B′ and Na = Na ′ and Nb = Nb′

Another example of the original formulation of a unicity theorem can be
derived from the public-key Needham-Schroeder protocol (Figure 2.5). An
initiator A of this protocol has to issue a fresh nonce Na and include it in
the first message. Therefore, if that nonce is not available to the Spy and evs
is a trace of the protocol model such that

Crypt(pubK B){|NonceNa,AgentA|} ∈ parts(spies evs) and
Crypt(pubK B′){|NonceNa,AgentA′|} ∈ parts(spies evs)

then

A = A′ and B = B′

Conversely, should Na be available to the Spy, she might have created
at will the certificates containing the nonce, even for random agents A and
A′, and the conclusion would not hold. So, an alternative theorem relies on
both B and B′ being uncompromised. Proving these theorems requires an
inductive analysis of the protocol steps and a simplification of the arising
subgoals. The critical case is the step where the fresh component is created.
If a different component is introduced, then simplification terminates the
subgoal; if the same component is introduced, then the freshness assumption
concludes the proof.

The first unicity theorem discussed above is only useful to the Server, who
is the only entity capable of checking its assumptions — no other agent can
directly verify that the Server issues certain messages. The second theorem
can be applied by an uncompromised agent B only upon reception of the
certificates {|Na, A|}Kb and {|Na, A′|}Kb . Once B has received the two certifi-
cates, should A differ from A′, the theorem will be violated. Thus, B will
suspect that something that lies outside the formal model has happened,

56 4. Verifying the Protocol Goals

ranging from some failure of the underlying transport protocol to brute-force
codebreaking. However, these considerations mentioning reception are infor-
mal. For the theorem to attain a higher level of formal expressiveness, we
shall introduce message reception in the model (§8.2).

Analysing the design of Kerberos V (Chapter 9) leads us to study the
relation between timestamps and unicity for the first time. We realise that
uncompromised agents always pick the right timestamp, which is the current
time. Because our formalisation of timestamping (Chapter 6) prevents two
events from occurring at the same time, it follows that an uncompromised
agent always inserts fresh timestamps in the messages he creates. This im-
plies, by the same reasoning conducted over nonces and session keys, that
the corresponding events are unique.

We investigated the unicity argument further. Its original formulation al-
lows a fresh component to appear more than once within identical messages.
For example, the unicity theorem for the Yahalom Server would not be vi-
olated if the Server sent a fresh session key within two equal messages. We
realise that this case can be ruled out thanks exactly to the freshness as-
sumption. However, it must be expressed formally. We declare a predicate
that takes as parameter an event and a trace. It is

Unique : [event, event list]

It scans the trace until the event is found and skipped, and then checks that
the event does not occur on the rest of the trace

Unique ev on evs , ev 6∈ set(tl(dropWhile(λz.z 6= ev) evs))

The predicate holds on an event ev and a trace evs when ev occurs only
once on evs. Precisely, function dropWhile scans the trace until the event is
found, and then function tl prunes it — these two functions come from the
theory file List.thy [33, 34]. As expected, we can prove that a trace evs of
the Yahalom model is such that

Unique (Says Server A {|Crypt(shrK A){|AgentB,Key Kab,Na,Nb|}, X|})
on evs

An equivalent result can be routinely proved by induction and simplifica-
tion for all protocols analysed so far. The definition of the predicate must be
used as a rewrite rule for the simplifier. In particular, the analysis of protocols
that are based on smartcards (§11.3.4) will gain by the new theorem in the
case where the protocols assume a secure means between agents and cards.
Agents will receive additional guarantees on the functioning of the cards.

4.5 Confidentiality

In the Dolev-Yao threat model, a protocol enforces confidentiality of a mes-
sage m if it does not disclose m to the Spy.

4.5 Confidentiality 57

Let us focus on session key confidentiality on the original Otway-Rees
protocol (Figure 8.4). If A and B are uncompromised and evs belongs to the
Otway-Rees model and contains

Says Server B {|Na,Crypt(shrK A){|Na,Key Kab|},
Crypt(shrK B){|Nb,Key Kab|}|}

but does not contain an oops event on Kab involving the same nonces

Notes Spy {|Na,Nb,Key Kab|}

then evs is such that

Key Kab 6∈ analz(spies evs)

Proving this Theorem [133, §4.6] requires evaluating the assertion for all the
possible forms of evs according to the protocol model. In each of these cases,
spies extracts the new message, say X, leaving expressions of the form

Key Kab 6∈ analz({X} ∪ (spies evs))

The symbolic evaluation rules for analz inspect X and pull out all components
except the keys. For example, they leave an expression of the form

Key Kab 6∈ analz({Key K} ∪ (spies evs))

in the subgoal corresponding to the oops event. Here, K is the non-fresh ses-
sion key that the oops event introduces. Symbolic evaluation cannot proceed
any further because in general K might be used to encrypt Kab in some
message appearing on evs. However, security protocols usually prevent this,
and Otway-Rees makes no exception. Proving such a result, addressed as the
session key compromise theorem [133, §4.5], provides the necessary rewriting
rule

Key K ′ ∈ analz({Key K} ∪ (spies evs)) if and only if
K ′ = K or Key K ′ ∈ analz(spies evs)

where K is a session key. The result confirms that Otway-Rees never uses
session keys to encrypt other keys, so the Spy cannot exploit a stolen session
key to learn others. Technically, it is easier to prove the theorem first for a
generic set of session keys, and then to specify it for a single session key.

After simplification by the compromise theorem, the oops subgoal of the
secrecy theorem terminates via an appeal to the unicity argument: the Server
issues Kab only with the nonces Na and Nb. The subgoal corresponding to
the third step of the protocol, where the Server issues the session key, is
solved by freshness of the session key, and the remaining subgoals routinely.

Although the session key confidentiality theorem constitutes the main
confidentiality result, it is still not directly applicable by the agents. Further
lemmas are necessary for this purpose (§2.2.4).

58 4. Verifying the Protocol Goals

Confidentiality is often crucial also on nonces. For example, in the TLS
protocol [134], the pre-master secret, PMS , is a nonce of fundamental impor-
tance because it is used to compute other nonces, session keys and MACs.
Confidentiality of the PMS can be proved conventionally with the addition
of a new rewriting rule for the analz operator. If A and B are uncompromised
and evs is a trace of the TLS model containing

Notes A {|AgentB,NoncePMS |}

then evs is such that

NoncePMS 6∈ analz(spies evs)

The theorem signifies that once an uncompromised agent notes the PMS , it
remains secure from the Spy. As explained on the preceding result, the proof
requires a suitable rewriting rule for analz, stating that session keys cannot
be exploited to learn nonces. If K is a session key, then evs is such that

Nonce N ∈ analz({Key K} ∪ (spies evs)) if and only if
Nonce N ∈ analz(spies evs)

As we shall see in the following, the methods presented in this section
remain unvaried after the introduction of message reception or of smartcards
into the formal treatment.

4.6 Authentication

Despite the fact that agent authentication is the main, claimed goal of many
security protocols, there exists significant potential for confusion about the
interpretation of this term [81]. A taxonomy due to Lowe may elucidate
the matter identifying four levels of authentication. Let us suppose that an
initiator A completes a protocol session with a responder B.

1. Aliveness of B signifies that B has been running the protocol.
2. Weak agreement of B with A signifies that B has been running the pro-

tocol with A.
3. Non-injective agreement of B with A on H signifies weak agreement of

B with A and that the two agents agreed on the set H of message com-
ponents.

4. Injective agreement of B with A on H signifies non-injective agreement
of B with A on H and that B did not respond more than once on each
session with A.

Observe that each level subsumes the previous one. In particular, the in-
jective agreement of B with A establishes an injective relation between B’s
runs of the protocol with A and A’s runs with B. The existing authentication
arguments carried out using the Inductive Method do not set their findings

4.6 Authentication 59

within this taxonomy. Although authentication is typically interpreted as
aliveness, we find that many guarantees also convey weak agreement. How-
ever, investigating non-injective agreement requires extending the approach,
as we explain below (Chapter 8).

The Inductive Method allows agents to respond more than once to a re-
ceived message (provided that it is in the expected form) because the protocol
models are meant to be as permissive as possible. Therefore, the strongest
form of authentication that we can wish to prove is non-injective agreement.
A generic rule of the protocol model takes a trace evs of the model, insists
that some events occur on it and others do not, and establishes that the
concatenation of a specific event ev with evs is still a trace of the model.
Constraining agents to a single reply can be done by adding to the generic
rule the extra assumption that ev does not occur on evs. While leaving the
existing proofs unaltered, this would make it possible to investigate injective
agreement. Lowe simply says that such a property “may be important in,
for example, financial protocols” [109, §2.4], but we are not aware of real-
world protocols that have claimed it explicitly as a goal. So, it does not raise
particular interest from the verification standpoint.

Most importantly, we realise that the original Inductive Method requires
some extensions to even formalise non-injective agreement. With key distribu-
tion protocols, for example, non-injective agreement on a session key is the rel-
evant form of authentication. Let us consider the original guarantees proved
about the shared-key Needham-Schroeder protocol (Figure 2.6), which came
with Isabelle’s earlier distributions up to Isabelle98-1 [158]. If A and B are
uncompromised and evs, which is a trace of the formal protocol model, con-
tains

Says B A (CryptKab(NonceNb))

and is such that

Crypt(shrK B){|Key Kab,Agent A|} ∈ parts(spies evs) and
CryptKab{|NonceNb,NonceNb|} ∈ parts(spies evs)

but does not contain an oops event on Kab, for any N and N ′, of the form

Notes Spy {|N,N ′,Key Kab|}

then evs contains

Says A B (CryptKab{|NonceNb,NonceNb|}).

The message {|Nb−1|}Kab is formalised as CryptKab{|NonceNb,NonceNb|}
(if the model Spy could add or subtract 1, then she could spoof all nonces), so
the assertion means that the last step of the protocol has taken place. Review-
ing the theorem, we have discovered that the first assumption is superfluous.
The general method for all theorems of this form appeals to authenticity
(§4.3) and then derives the confidentiality of the session key (§4.5). Hence, if
the certificate CryptKab{|NonceNb,NonceNb|} appears in the traffic, then it

60 4. Verifying the Protocol Goals

is integral; so induction proves it to have originated with A. This proof has
not required assuming that B sent the other certificate, which can in fact be
proved as a corollary.

Does this theorem establish non-injective agreement of A with B on Kab?
Upon reception of the two certificates mentioned, and with the assumptions
that A is uncompromised and that Kab has not been leaked by accident
(which belong to B’s minimal trust, see Chapter 5), B is informed that A
sent him a certificate sealed with Kab. While B learns Kab from one of the
certificates, A’s merely sending the certificate does not express A’s knowledge
of the key that seals it. So, B is not informed whether A agrees on Kab.
In general, A might be just forwarding an unintelligible message previously
received. By Lowe’s definitions, the theorem establishes only weak agreement
of A with B. However, the informal inspection of the protocol highlights that
A is in fact the true creator of the certificate and therefore knows the key
to seal it. We will prove such insight formally in Chapter 8 by means of two
different strategies.

4.7 Key Distribution

Key distribution is an important goal of many protocols. It is met between
two peers who complete a protocol receiving the same session key. Studying it
in conjunction with our principle of goal availability (next chapter) provides
a stronger version of this goal. It requires the peers to gain evidence that
they share a session key with each other. Precisely, we have key distribution
to B when there exists evidence that B learnt the session key. Below, we will
adopt this stronger version, which may be known to some researchers as key
confirmation.

Bellare and Rogaway appear to adopt the weaker definition of key dis-
tribution. They state that key distribution is “very different from” agent
authentication. “The reason is that entity authentication is rarely useful in
the absence of an associated key distribution, while key distribution, all by
itself, is not only useful, but it is not appreciably more so when an entity
authentication occurs along side. Most of the time the entity authentication
is irrelevant” [48, §1.6].

Key distribution and agent authentication are certain to be strictly re-
lated. Mutual non-injective agreement on a session key is certain to imply
key distribution. Moreover, our proofs always establish key distribution via
the authentication argument. This appears to be the only successful method
to prove key distribution on all protocols analysed so far. Hence, our findings
support the claim that the two goals are equivalent.

To make an example of the last implication, let us recall the second and
third steps of the shared-key Needham-Schroeder protocol (Figure 4.2). Upon
B’s reception of the certificate {|Kab, A|}Kb , the only method to show B that
A also knows Kab is to derive that the certificate originated with A upon

4.7 Key Distribution 61

2. S → A : {|Na, B,Kab, {|Kab, A|}Kb |}Ka

3. A → B : {|Kab, A|}Kb

Fig. 4.2. Shared-key Needham-Schroeder protocol: fragment

reception of the second message of the protocol, which delivered Kab to A.
This also establishes non-injective agreement of A with B on the session key.
Formalising message reception (§8.2) is, once more, required to express this
reasoning formally.

5. The Principle of Goal Availability

A principle of realistic protocol analysis is developed. It complements
the principles of prudent protocol design, ultimately contributing to
strengthening the protocols. It prescribes that the protocol guarantees
be based on assumptions that the protocol participants can verify.

A popular approach to protocol analysis relies on a number of general princi-
ples of prudent protocol design [7, 14]. The analysis, which is typically carried
out by informal means, studies conformity of the protocols to the principles.
Although the principles are claimed to be neither necessary nor sufficient
for protocol correctness, this approach has unveiled a number of protocol
subtleties.

Some design principles concern, for example, the appropriate use of en-
cryption, and point out that “extra encryption” is not necessarily the same
as “extra security.” Others pertain to timeliness, pointing out how to use a
nonce for freshness purposes. But the principles that have been most often
appealed to are perhaps those about explicitness. They prescribe that each
message be explicit about its contents; otherwise, the agents would be forced
to heuristic interpretations that typically become points of convergence of at-
tackers’ efforts. Syverson takes a cautionary look at these principles [152], but
explicitness still appears to be a significant prerequisite to prudent design.

Our contribution is the development of a principle for the realistic formal
analysis of security protocols. Some of the preceding discussion (§2.2.4) pro-
vides a useful introduction here. Called goal availability, our principle offers
a valuable complement to the existing design principles for the common aim
of strengthening protocols. It prescribes the development of formal guaran-
tees that a protocol meets its goals and, most importantly, prescribes that
those guarantees be used by the protocol participants in practice. While goal
availability is meant to directly guide protocol analysis, it may have indirect
consequences on protocol design through the findings of the analysis. The
experiments conducted thus far appear to confirm that adherence to goal
availability is necessary for a formal analysis to be realistically significant.
This chapter defines goal availability precisely. In consequence, the informal
claim that a protocol meets its goals has a precise, formal meaning in this
book: the protocol makes its goals available. Conversely, whenever we for-
mally conclude that a protocol fails to make a goal available, we informally

64 5. The Principle of Goal Availability

say that the protocol does not meet that goal. A sketch of this principle
is already published [27], but its application context is finally clarified and
exemplified in this book.

Goal availability says that we should look for formal guarantees based on
assumptions that the protocol participants can verify; otherwise, any conclu-
sions would be of no use in the real world because the agents could just not
appeal to them. However, our confidentiality argument (§4.5) showed that
both peers must be uncompromised in order to prevent the Spy from know-
ing their shared keys and then decrypting the ciphers that deliver the session
key. Likewise, the Spy must not have learnt the key because of the agents’ in-
caution (formalised via an oops event). These assumptions form what we call
the minimal trust because they cannot be verified by any honest agent. Rein-
terpreting this concept from a specific agent’s viewpoint, we observe that an
agent’s minimal trust includes assumptions about his peer’s behaviour, such
as that the peer is uncompromised and has not leaked the key.

Our analysis principle is defined here, while its relation with the design
principles is left to subsequent chapters. We argue that checking protocol
conformity to goal availability would have anticipated the discovery of the
proverbial lack of explicitness in the public-key Needham-Schroeder protocol.
A similar finding arises from the Shoup-Rubin smartcard protocol (Chap-
ter 11), thus supporting the claim that checking a protocol for goal availabil-
ity helps us unveil potential lack of explicitness. However, our principle has
a broader impact. For example, it unveils new protocol insights on Kerberos
IV (Chapter 7) and V (Chapter 9) and on the Otway-Rees protocol (§8.5.1).

The treatment begins by supporting the necessity to define a threat model
before any security claim is made (§5.1). Then, the principle of goal avail-
ability is formalised (§5.2) and its past incarnations discussed (§5.3). Finally,
its applications are anticipated (§5.4).

5.1 The Need for a Threat Model

Our principle of goal availability must be studied in a specific threat model. In
fact, it seems fair to assert that some specification of the attacker’s potential
must be considered to give sense to any security statement. The mentioned
principles of prudent protocol design make no exception: they ought to be
studied in a specific threat model.

As seen above (§3.9), the most widely accepted threat model to analyse
security protocols is due to Dolev and Yao [75]: the Spy has complete control
of the network but can do no cryptanalysis. Therefore, it is sensible to study
adherence to the design principles exactly in this threat model, although
related variants might also be interesting to examine.

For example, let us consider the popular public-key Needham-Schroeder
protocol, which we have seen above (Figure 2.5). It mutually authenticates its
participants while delivering secret nonces to them. Establishing whether it

5.2 Goal Availability 65

conforms to the explicitness principle is difficult. Lowe’s middle-person attack
on this protocol confirms that the second protocol message lacks explicitness
because it fails to mention the identity of the sender.

However, it must be observed that Lowe’s answer is significant only if the
protocol is analysed in a threat model that is at least as pessimistic as Dolev-
Yao’s. By contrast, it is interesting to observe that the original protocol does
not lack explicitness and hence does not suffer the attack in other threat
models. The most significant one probably is a model where the Spy is an
outsider: she is not a registered agent and hence cannot initiate the protocol.

Any other less powerful variants of the Dolev-Yao Spy, such as passive
eavesdroppers, would let us conclude that the original protocol is not flawed.
To just advance a more articulated example, suppose that each pair of agents
must pre-execute another strong authentication protocol before they engage
in a session of the protocol. This means that each message of the Needham-
Schroeder protocol would travel on a pre-authenticated channel, while the
peers aim at sharing a session key made of the concatenation of the two
exchanged nonces. Lowe’s attack clearly would not go through in this case,
so that lack of explicitness could not be denounced. Many other, more or
less realistic threat models can be conceived to allow some correspondingly
realistic claim of protocol security.

In consequence, establishing whether or not a protocol holds to the explic-
itness principle is subordinated to the given threat model. The same certainly
applies to the principle of goal availability. Additional discussions appear in
the following chapters each time a protocol is studied in relation to goal
availability.

5.2 Goal Availability

We first introduce an abstract version of the principle.

Principle 5.2.1 (Goal Availability — abstract version). A security
protocol ought to make its goals available in practice.

Informally speaking, a goal is available in practice to a protocol peer if
there exists some point in the protocol execution when the peer becomes
entitled to enjoy the goal. We will be more precise below. It is a formal
guarantee that states that the peer gets the goal at that point, so a formal
model of the protocol is necessary. What is crucial is that the guarantee must
rely on assumptions that the peer is able to verify; otherwise, he cannot apply
it. If there exists no such guarantee, we can conclude that the protocol fails
to make the goal available to that peer; in other words, the protocol fails
to conform to the principle of goal availability for the given goal-agent pair.
However, other guarantees may exist, letting us conclude, for example, that
the same goal is available to another agent.

66 5. The Principle of Goal Availability

1. A → S : A, B

2. S → A : {|A, B,Kab|}Ka

3. S → B : {|A, B,Kab|}Kb

Fig. 5.1. Another example protocol

An example usually clarifies an informal presentation. Let us consider the
example protocol in Figure 5.1. It aims at the distribution of confidential
session keys to the peers with the help of a trusted Server. Each agent owns
a long-term symmetric key, and shares it with the Server alone. Suppose that
agent A is not the Spy. Upon A’s request, the Server issues a session key Kab
and sends it off to both peers within encrypted certificates. This protocol can
be analysed using the Inductive Method. A typical confidentiality guarantee
may have the following form: the event

Says Server A (Crypt(shrK A){|AgentA,AgentB,Key Kab|})

implies that Kab is confidential. Suppose we could convince ourselves that
there exists no other confidentiality guarantee; then we could conclude that
the protocol fails to make the goal of session key confidentiality available to
peer A. Never during the protocol execution can A verify what is happening
at other parts of the network. In particular, A cannot witness that the Server
sent him the message containing the session key. In other words, the guarantee
is not applicable by A.

However, this protocol does make session key confidentiality available to
A because it can be proved that A’s reception of message

Crypt(shrK A){|AgentA,Agent B,Key Kab|}

implies that Kab is confidential (because A’s shared key is known only to
A and to the Server). This guarantee says that A is entitled to consider the
session key confidential as soon as she receives a specific message containing
that key. By contrast, the first guarantee has only theoretical importance
when considered from A’s viewpoint. In brief, formal guarantees must be
developed from each peer’s viewpoint.

As discussed in the previous section, establishing conformity to goal avail-
ability demands a threat model. As we have now provided the necessary
intuition, we can refine principle 5.2.1 as follows.

Principle 5.2.2 (Goal Availability — refined version). Given a secu-
rity protocol, there ought to exist a formal guarantee that the protocol goals
are available to the peers in a realistic threat model.

It is clear that the principle intends to guide the formal analysis of proto-
cols. It is strongly dependent on the chosen threat model, so that some goal
might be available within some model though non-available within a more
realistic model. It is now necessary to precisely define the concept of available
goal. Recall that a formal protocol model includes a threat model.

5.2 Goal Availability 67

Definition 5.2.1 (Available Goal). Let P be a security protocol, P be a
formal model for P, g be a goal for P, and A be an agent’s name. We say
that g is available to A in P if there exists a formal guarantee in P that
confirms g and that is applicable by A in P.

The definition signifies that a goal is available to a peer if there exists an
applicable guarantee for the peer about that goal. We must define the latter
concept precisely.

Definition 5.2.2 (Applicable Guarantee). Let P be a security protocol,
P be a formal model for P, and A be an agent’s name. We say that a formal
guarantee in P is applicable by A in P if it is established on the basis of
assumptions that A is able to verify in P within her minimal trust.

The discussion above on the toy protocol is useful here. Definition 5.2.2
says that a guarantee relying, for example, on some agent A’s sending or
receiving a session key should not be considered applicable by an honest
agent B in a model, such as Dolev-Yao’s, where each honest agent only sees
the messages that he alone sends or receives.

But realistic models also formalise a number of facts that pertain to the
environment in which the protocols are executed, and that agents can never
verify. For example, no agent can verify that his own and his peer’s work-
stations are secure from trojan horse attacks that would disclose all their
secrets. Likewise, no agent can make sure that his remote peer keeps from
colluding with intruders, or that a certain point-to-point connection is not
broken forever. Therefore, if formalised in the threat model, these facts form
what we call the agent’s minimal trust, something that an honest agent can
only take for granted. Definition 5.2.2 tolerates the minimal trust within an
applicable guarantee.

Definition 5.2.3 (Minimal Trust). Let P be a security protocol, P be a
formal model for P, and A be an agent’s name. The minimal trust of A is
the set of environmental facts formalised in P whose truth values A needs to
know but can never verify in practice.

Precisely, it is clear that no honest agent has complete control over the en-
vironment except for his own incoming/outgoing traffic. He can only make
assumptions about the rest, which indeed are trust assumptions. It follows
that the minimal trust of an agent is the set of environmental facts whose
truth value the agent needs to establish in order to enjoy formal protocol
guarantees, although in practice he cannot get evidence about that value.

Definition 5.2.3 also has an important consequence. The assumptions of a
formal guarantee that we require an agent to be able to verify for the guaran-
tee to be applicable remain only those concerning the protocol messages. In
fact, the form of the protocol messages fundamentally influences the strengths
and weaknesses of the entire protocol.

68 5. The Principle of Goal Availability

In this paper, we adopt a threat model based on Dolev-Yao’s where in
addition agents’ collusion with the Spy is explicitly formalised. Hence, in our
model, an agent’s minimal trust comprises that his peer is neither the Spy
nor an accomplice of the Spy’s, and that encryption is perfect. The minimal
trust may be extended in case specific protocols, such as those based on
smartcards, require extensions to the threat model itself. In general, a large
minimal trust may characterise a detailed model, while less realistic formal
models, such as one that precludes collusion with the Spy, often take the
minimal trust for granted and omit it.

Let us summarise. Goal availability tells us that the formal guarantees
must be studied from the agents’ viewpoints to check if the peers can apply
them within their minimal trust. The protocol analyser routinely derives real-
world lessons from idealised analyses. We shall see that studying protocols
with respect to goal availability obtains for us novel insights.

5.3 Past Incarnations of Goal Availability

Although goal availability has never been formalised into a principle thus
far, it is certain to have influenced some previous works, perhaps implicitly.
Here, we advance some comments that are necessarily incomplete due to the
large number of formal techniques developed in the last decade. As a general
remark, the fact that a protocol is specified from each agent’s standpoint does
not necessarily imply that any guarantees about that protocol model comply
with goal availability. Compliance with goal availability entirely depends on
the very statement of the guarantee, which can be influenced by the proof
technique in use. Therefore, the analyser must continuously bear in mind this
principle while his work unfolds.

For example, an inductive protocol specification of is a set of rules, each
expressing a fragment of a specific agent’s operation. However, Paulson’s
initial proof experiments by induction and theorem proving had to primarily
focus on developing proof strategies for the confidentiality goal, leaving less
consideration for the theorem assumptions [132]. Some of the early proof
releases unsurprisingly featured assumptions about the responder that were
hardly justifiable from the initiator’s viewpoint [158]. Each honest agent’s
view of the network traffic clearly is limited to what he alone sends or receives.
Only later, in studying the authenticity of certificates, did he point out that
“agents need guarantees (subject to conditions they can check) confirming
that their certificates are authentic” [133], which exactly sounds as a call
for goal availability. After spelling out the new principle fully, we checked
all existing inductive statements against it and therefore had to upgrade
a number of statements and corresponding proofs. It is fair to state that
the current proof release [156] only features guarantees that are compliant
with goal availability. The upgrade process brought forward some interesting
insights that are discussed in the rest of this book.

5.4 Anticipating the Applications of Goal Availability 69

Burrows et al.’s compact analysis by BAN logic [58] indeed is conducted
from each agent’s viewpoint and accurately weighs up the preconditions of
each formal statement. This is exactly in the spirit of goal availability. For
example, their work points out what seem to be inexplicable assumptions
for certain proofs to proceed: the analysis of the symmetric-cryptography
Needham-Schroeder protocol [58] reveals that it is “unusual” and “dubious”
that the responder B can merely assume that the received session key is
fresh. The same does not apply to the protocol initiator. Because B cannot
verify that assumption, we conclude that the protocol fails to make the goal
of freshness of the session key available to B. In consequence, it is well known
that an intruder can mount a replay attack on the session key against B.

The importance of the agents’ viewpoints appears to be implicit in the
analyses by CSP and model checking. For example, Lowe’s influential contri-
bution was initially oriented to only finding attacks [107, 112]. Only later was
the method tailored to proving protocol goals, and it was natural to define
the process formalising each agent’s sending signals solely on the channels
that the agent can access. This process-centric style of specifying the proto-
cols implicitly shows sensitivity to goal availability. But, as remarked above,
our principle is determinant during the actual verification process. It seems
fair to state that the proof methods that were subsequently adopted, such
as equivalence checking and trace equivalence, inherently comply with goal
availability [142]. However, a deeper scrutiny of all published proofs, which
is beyond our current goals, may turn out to be interesting.

The principle of goal availability appears to be naturally embedded in
Fabrega et al.’s analyses by strand spaces [79]. That method lets the anal-
yser study protocol properties over a bundle, which is exactly a collection of
actions performed by a single peer. Also recent advances [9] obtained using
the provable security approach of Bellare and Rogaway [48] seem to pro-
ceed in the direction of goal availaibility: agents are divided into clients and
servers and security is defined with respect to each. Approaches whose proofs
of correctness are based on equivalence checking, such as the Spi-calculus [5],
implicitly embed each agent’s viewpoint in purely declarative property spec-
ifications. However, adherence to goal availability must be explicitly studied
to gain unknown protocol insights, as we shall see in the following chapters.

5.4 Anticipating the Applications of Goal Availability

This section presents some preliminary reasoning in terms of goal availability
on the public-key Needham-Schroeder protocol, which was represented in
Figure 2.5. More significant examples will follow throughout the book.

Both the original protocol version, subject to Lowe’s attack, and the ver-
sion fixed by Lowe were studied inductively by Paulson in our threat model
[33, 34]. Let ns public denote the model for the flawed, original protocol. It
comes with the file NS Public Bad.thy [33, 34]. Let evs be a generic trace of

70 5. The Principle of Goal Availability

ns public. We study whether the goal of Nb confidentiality is made available
to B. The strongest relevant guarantee that can be proved is Theorem 5.4.1.
The theorem names follow our naming conventions (§1.3.2).

Theorem 5.4.1 (NSP Spy not see NB). If A and B are uncompromised
and evs contains

Says B A (Crypt(pubK A){|NonceNa,NonceNb|})

but does not contain, for any C,

Says A C (Crypt(pubK C)(NonceNb))

then evs is such that NonceNb /∈ analz(spies evs).

While honesty of the peers belongs to B’s minimal trust, A’s refraining from
sending any instance of the second message certainly does not. By definition
5.2.1, the goal of Nb confidentiality is not available to B, who can never check
his peer’s activity. Intuitively, non-availability of the goal signifies that the
existing guarantees of Nb confidentiality are of no use to B. Not surprisingly,
when the assumption about A’s activity is not verified in practice, Nb indeed
loses confidentiality, and then the Spy can mount the known man-in-the-
middle attack.

Lowe’s corrected protocol mentions B in the second message. An anal-
ogous reasoning for this protocol is given in Theorem 5.4.2. Here, evs is a
generic trace of the model for the corrected protocol, which can be found
with file NS Public.thy [33, 34].

Theorem 5.4.2 (NSPL Spy not see NB). If A and B are uncompro-
mised and evs contains

Says B A (Crypt(pubK A){|NonceNa,NonceNb,Agent B|})

then evs is such that NonceNb /∈ analz(spies evs).

This theorem confirms that the corrected protocol makes Nb confidentiality
available to B, who is guaranteed within his minimal trust that his nonce is
kept secret (and Lowe’s attack cannot succeed).

The details of these protocols were known before the present research.
However, we believe that studying availability of the confidentiality goal to B
would have helped to discover the lack of explicitness in the second message.
Faced with Theorem 5.4.1, the human analyser would have pragmatically
checked if any extra explicitness reduced B’s assumptions to either verifiable
ones or to minimal trust assumptions. This is exactly how we will proceed
in general. Without goal availability, it is difficult to evaluate whether The-
orem 5.4.1 as it stands conveys a satisfactory guarantee.

We will show that studying availability of the confidentiality goal on the
Shoup-Rubin protocol highlights a previously unnoticed lack of explicitness

5.4 Anticipating the Applications of Goal Availability 71

(Chapter 11). These considerations support the claim that non-availability of
a confidentiality goal indicates lack of explicitness. However, the claim does
not always hold. We will show on Kerberos IV (Chapter 7) that confidentiality
of a session key is not available to the protocol responder in a realistic model,
although this is not due to lack of explicitness. Therefore, studying availability
of other goals may also be important, as clarified below on the original Otway-
Rees protocol (§8.5.1). An assessment on availability of the key distribution
goal highlights that this goal can be made available to the initiator by merely
strengthening one protocol message. This finding undermines the BAN logic
claim [58] that, if a session key is never used to encrypt a protocol message,
then no agent is entitled to know that his peer knows that key.

6. Modelling Timestamping and Verifying a
Classical Protocol

The Inductive Method is extended with the treatment of timestamps,
which, contrarily to nonces, are guessable numbers. Then, the first
timestamp-based protocol, BAN Kerberos, is modelled and verified
while serving to demonstrate the extensions.

The original Inductive Method does not include timestamps among the for-
malised message components (Chapter 3) and is in fact only benchmarked
on nonce-based protocols such as Otway-Rees and Yahalom.

At the beginning of the 1980s, Denning and Sacco pioneered the use of
timestamps in the field of security protocols [71] to avoid replay attacks.
Timestamps, which are numbers marking a specific instance of time, have
been employed since then in many protocols such as BAN Kerberos [58, §6]
and Kerberos IV [121]. We extend the Inductive Method with the treatment
of timestamps in order to analyse this new class of protocols.

The single operational difference between nonces and timestamps is that
only the latter can be guessed by the Spy. So, we model timestamps as guess-
able numbers to include in the allowed message components. The price is
limited to that of introducing the new message constructor, proving a few
technical lemmas, and doing minor updates to some of the existing ones. The
approach becomes significantly more general. The new message component is
also used to model any extra information that the real-world protocols pass
inside their messages, which is in general available to the Spy. This is the
case, for example, with the session identifier and other fields of the model for
the TLS protocol [134].

The first benchmark we choose for the extended approach is the BAN
Kerberos protocol, as its well-known analysis by BAN logic [58, §6] provides
a significant opportunity for comparison. The BAN analysis concludes that,
if A has completed a session of the protocol with B, then A is aware that
B meant to communicate with A using the session key Kab; the equivalent
guarantee is offered to B, resulting in

A |≡B |≡A
Kab←→ B and B |≡A |≡A

Kab←→ B

These conclusions may be viewed as mutual non-injective agreement on the
session key. Our findings confirm this goal (via some extensions to the ap-
proach, see §8.3) and strengthen it with a deeper investigation of others such

74 6. Modelling Timestamping and Verifying a Classical Protocol

as authenticity and confidentiality [41]. The proofs, partially adapted from
the existing ones on the shared-key Needham-Schroeder protocol, also sug-
gest refining the treatment of the accidental losses of session keys, the oops
events. Our protocol model also accounts for the temporal checks performed
by the agents at each step. This helps us explain how the protocol functions
beyond the mere sequencing of messages.

The Kerberos project started at MIT during the mid 1980s [121] and, over
a decade, generated several variants of the same protocol design [102]. BAN
Kerberos is considered the natural modification of the shared-key Needham-
Schroeder protocol with the addition of timestamps. Therefore, it is interest-
ing to compare the temporal requisites that the two protocols add to the goal
of authentication. This is achieved later (§8.6) because the Inductive Method
must be suitably extended.

This chapter presents our formalisation of guessable numbers (§6.1) and
of a discrete time (§6.2), which were released with the 1999 distribution of
Isabelle [158]. Then, it introduces the BAN Kerberos protocol (§6.3), its
inductive model (§6.4) and the corresponding guarantees (§6.5).

6.1 Modelling Guessable Numbers

Guessable numbers are inherently different from nonces: all guessable num-
bers are assumed to be known to the Spy. For example, they are used to
mark time instances or to specify message options. Conversely, nonces are
long random numbers that are extremely difficult to guess, and our model
assumes them to be impossible to guess (§3.10).

In consequence, guessable numbers must be modelled separately from
nonces. This requires three simple steps. First, the Isabelle datatype msg
is extended with a new constructor Number that takes as its parameter a
natural number. A timestamp T will be represented in the model by the
message component Number T .

Then, the inductive definition of synthH seen above (§3.10) is extended
with a fifth rule to allow the Spy to synthesise any number; this is the major
difference with nonces.

5. Any number can be synthesised from any message set.

Number N ∈ synthH

Finally, the main operators need suitable rewriting rules for the symbolic
evaluations that involve the new component. They are easy to obtain as two
technical lemmas.

parts({Number N} ∪H) = {Number N} ∪ (parts H)
analz({Number N} ∪H) = {Number N} ∪ (analzH)

6.2 Modelling Time 75

Minor updates necessary to a few existing lemmas are omitted here. Once
guessable numbers are modelled, a formal treatment of time can be conceived,
as we shall see in the next section.

6.2 Modelling Time

Traces only grow linearly. If the event ev is located after the event ev ′ in a
trace, then ev ′ in the real world occurred at some later, unspecified, time after
ev did. The trace model assumes that no two events occur simultaneously, an
assumption that can be relaxed by defining a trace as a list of sets of events.
However, this does not appear to be necessary. If ev1 and ev2 really occurred
concurrently, the protocol model contains a trace where ev1 precedes ev2 and
another trace where ev2 precedes ev1 . Concurrency is therefore modelled as
the two corresponding sequential approximations.

If we imagine that each event in a trace carries the time instant when
it occurred, then a trace provides a sampling of time. This corresponds to
defining an injective function between the set of all traces and the set of all
samplings of time. Therefore, the time sampling associated with a trace is
such that the first value of the sampling represents the time when the first
event in the trace took place, the second value represents the time for the
second event in the trace; and so on. The function is clearly not a bijection
because there may exist different traces corresponding to the same sampling.
The empty sampling is associated with the empty trace.

For simplicity, we can normalise a time sampling in terms of segments
of natural numbers as follows. Let the segment 0 correspond to the empty
sampling. Let the segment 1 correspond to any sampling containing only one
value; let the segment 1, 2 correspond to any sampling containing only two
values; let the segment 1, 2, 3 correspond to any sampling containing only
three values, and so on. This indeed is a simplification as it hides the precise
temporal relations between events occurring on different traces. However,
these appear to be irrelevant to the experiments we discuss in the following.

Since the current time of a trace is the highest value of the corresponding
time sampling, after normalisation the current time of a trace of length n
exactly is n. In consequence, we declare the function

CT : event list −→ nat

and define

CT evs , length evs

Recall that a trace of length n represents a history of the network during
which n events have taken place. Then, it seems intuitive to think that the
current time of the trace is precisely n. Clearly, this formalisation hides the

76 6. Modelling Timestamping and Verifying a Classical Protocol

problem of keeping remote clocks synchronised: each agent’s minimal trust
includes that his peers’ clocks are synchronised with his own. The treatment
presented here will be used in the rest of this book for the analyses of the
protocols that make use of timestamps and of the associated notion of time.

6.3 The BAN Kerberos Protocol

BAN Kerberos [58, §6] is a key distribution protocol, namely it aims at dis-
tributing session keys to its peers (Figure 6.1).

1. A → S : A, B

2. S → A : {|Tk , B,Kab, {|Tk , A,Kab|}Kb| {z }
ticket

|}Ka

3. A → B : {|Tk , A,Kab|}Kb| {z }
ticket

, {|A,Ta|}Kab| {z }
authenticator

4. B → A : {|Ta + 1|}Kab

Fig. 6.1. BAN Kerberos protocol

The design closely resembles that of the shared-key Needham-Schroeder
protocol (§2.2.4) but rests on a different procedure of mutual authentication
(in particular the last two steps). The protocol associates one lifetime with
session keys and another with authenticators. Lifetimes represent the time
intervals within which the corresponding components should be considered
valid. The lifetimes are passed in the messages but we omit them from the
presentation, assuming they are known to all.

After A’s initial request to establish a session with B, the Server issues
a fresh session key and includes it, along with the timestamp that marks
its time of issue, inside a message sealed with A’s shared key. The message
also contains a ticket sealed with B’s shared key, which in turn contains a
duplicate of the session key and its timestamp. The message is sent to A,
who removes the external encryption and learns that the session key Kab
issued at time Tk is indeed meant for the session with B. Then, A checks
that Tk has not expired to establish whether the session key is still valid. If
so, A builds an authenticator with a new timestamp Ta and sends it with
the ticket to B. Upon reception of this message, B decrypts the ticket and
learns the session key for the session with A and its timestamp Tk . If Tk
has not expired, B uses the session key to decipher the authenticator. This
should give him evidence that A was alive and able to use the session key
at time Ta. The same guarantee should be given to A by the certificate that
B sends her in the final step of the protocol. However, the choice of Ta + 1
is imprecise because it is not necessarily the time when B acts. It might

6.4 Modelling BAN Kerberos 77

be the historical influence of the shared-key Needham-Schroeder protocol to
have determined this design choice, although BAN Kerberos uses timestamps
rather than nonces. It would be preferable that B insert the current time.

6.4 Modelling BAN Kerberos

This protocol uses the notion of time in two ways. One is the issue of time-
stamps as the current time. Having defined a simple model of discrete time
in the previous section, we can use it here.

Another use of time is the checking of timestamps against the current
time with respect to specific lifetimes. For this purpose, we declare two nat-
ural numbers, sesKlife and authlife, to formalise respectively the lifetimes of
session keys and authenticators. Agents check the timestamps against them
and discard the messages containing expired timestamps. To formalise those
checks, we declare two binary predicates

expiredK, expiredA : [nat, event list]

and define them as

expiredKTk evs , (CT evs)− Tk > sesKlife

expiredATa evs , (CT evs)− Ta > authlife

When, for example, expiredKTk evs holds, a longer time than sesKlife has
elapsed since Tk at the moment when the history recorded by evs is examined.
Therefore, the session key associated with Tk is no longer valid on evs (which
technically has become too long). The association between Tk and its session
key is established by the structure of the second protocol message, so it does
not need explicit formalisation.

The constant bankerberos, declared as a set of lists of events, represents
the formal protocol model and is defined by induction in Figure 6.2. It can
be found with file Kerberos BAN.thy (Figure 3.1). The empty trace formalises
the initial scenario, in which no protocol session has taken place. Rule Nil
sets the base of the induction stating that the empty trace is admissible in
the protocol model. All other rules represent inductive steps, so they detail
how to extend a given trace of the model.

Rule Fake models the Spy’s illegal activity, which includes forging any
timestamps. Rule BK1 lets any agent begin a protocol session at any time.
Rule BK2 models the Server’s operation, which is subordinate to some other
agent’s having sent the first message of the protocol. Since the first mes-
sage is a cleartext, the Spy may easily fake it many times and overload the
Server. The session key has not been used before and is accompanied with a
timestamp drawn from the current time. Rule BK3 states that an agent who
initiated a protocol session may proceed with the third step of the protocol
if she has been sent a message with a non-expired session-key timestamp. By

78 6. Modelling Timestamping and Verifying a Classical Protocol

Nil :
[] ∈ bankerberos

Fake :
[[evsF ∈ bankerberos; X ∈ synth (analz (spies evsF))]]
=⇒ Says Spy B X # evsF ∈ bankerberos

BK1 :
[[evs1 ∈ bankerberos]]
=⇒ Says A Server {|Agent A, Agent B|} # evs1 ∈ bankerberos

BK2 :
[[evs2 ∈ bankerberos; Key Kab 6∈ used evs2; Kab ∈ symKeys;

Says A’ Server {|Agent A, Agent B|} ∈ set evs2]]
=⇒ Says Server A (Crypt (shrK A) {|Number (CT evs2), Agent B, Key Kab,

Crypt (shrK B) {|Number (CT evs2), Agent A, Key Kab|}|})
evs2 ∈ bankerberos

BK3 :
[[evs3 ∈ bankerberos;

Says A Server {|Agent A, Agent B|} ∈ set evs3;
Says S A (Crypt (shrK A) {|Number Ts, Agent B, Key Kab, Ticket|})
∈ set evs3;

¬ expiredK Ts evs3]]
=⇒ Says A B {|Ticket, Crypt Kab {|Agent A, Number (CT evs3)|}|}

evs3 ∈ bankerberos

BK4 :
[[evs4 ∈ bankerberos;

Says A’ B {|Crypt (shrK B) {|Number Ts, Agent B, Key Kab|},
Crypt Kab {|Agent A, Number Ta|}|} ∈ set evs4;

¬ expiredK Ts evs4; ¬ expiredA Ta evs4]]
=⇒ Says B A (Crypt Kab (Number Ta))

evs4 ∈ bankerberos

Oops :
[[evsO ∈ bankerberos;

Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key Kab,
Ticket|}) ∈ set evsO]]

=⇒ Notes Spy {|Number Ts, Key Kab|}
evsO ∈ bankerberos

Fig. 6.2. Inductive model of BAN Kerberos

6.5 Verifying BAN Kerberos 79

rule BK4, an agent completes the protocol if he has been sent a specific in-
telligible message containing two non-expired timestamps. Observe that the
model does not need to increment the timestamp in the last protocol step
as the message is already structurally different from all others. Finally, rule
Oops as it stands allows accidental leaks of session keys at any time. It will
be refined (§6.6) to only allow leaks of keys that have expired.

Observe that rules BK1 to BK4 model the agents’ behaviour that is legal
according to BAN Kerberos. For example, it is visible that only the correct
timestamps are inserted. Even the Spy can execute them, a feature that
models her legal behaviour.

6.5 Verifying BAN Kerberos

The main guarantees that we have proved about BAN Kerberos are pre-
sented in this section, where evs always stands for a generic trace of the
formal protocol model bankerberos. The authentication goals (§6.5.6) will be
subsequently strengthened thanks to a few extensions to our approach (§8.3).
The theorem names follow our naming conventions (§1.3.2).

6.5.1 Reliability of the BAN Kerberos Model

The only relevant reliability theorem states that the model Server is reliable
(Theorem 6.5.1). If the certificate is addressed to A, then the Server encrypts
it with A’s shared key, and inserts a session key and the ticket meant for
A’s peer, B. Since cryptographic keys can be either long-term keys or session
keys, Kab is shown not to be a long-term one; since it is never used before
the Server issues it, it is fresh. The timestamp is chosen as the current time
of the subtrace where the key is being issued.

Theorem 6.5.1 (BK Says Server message form). If evs contains

ev = Says Server A (Crypt K{|Number Tk ,Agent B,Key Kab,Ticket |})

then

K = shrK A and Kab ∈ symKeys and Kab 6∈ range shrK and
Ticket = Crypt(shrK B){|Number Tk ,Agent A,Key Kab|}

and evs is such that

Key Kab 6∈ used(before ev on evs) and
Tk = CT(before ev on evs).

Proving the last two conjuncts of the assertion requires some minor exten-
sions to the classical strategy (§4.1). Various lemmas must be applied for the
symbolic evaluation of the length of a subtrace, as is required by the before
function.

80 6. Modelling Timestamping and Verifying a Classical Protocol

6.5.2 Regularity

The protocol employs a single kind of long-term key and never sends it in
the traffic, so a key regularity lemma is provable. An agent’s shared key
can be analysed from the traffic if and only if the agent is compromised
(Lemma 6.5.1).

Lemma 6.5.1 (BK Spy analz shrK). Trace evs is such that
Key(shrK A) ∈ analz(spies evs) if and only if A ∈ bad.

All subsequent guarantees about certificates sealed with a shared key will
appeal to this lemma to guarantee their integrity.

6.5.3 Authenticity

The second message and the ticket contained inside it represent the crucial
certificates of the protocol because they are meant to deliver the session key
to A and B respectively. They are encrypted under shared keys. Applying the
regularity lemma assures that the Spy cannot handle the keys that encrypt
the certificates, and so cannot spoof them.

Let us consider the certificate for A and assume the agent to be uncompro-
mised in order to apply the regularity lemma. When A receives the certificate
and inspects it, she realises that it is the four-component certificate deliver-
ing a session key. The theorem proves that the certificate was created by the
only entity that is legally entitled to issue session keys, the Server; so it is
authentic (Theorem 6.5.2).

Theorem 6.5.2 (BK Kab authentic). If A is uncompromised and evs is
such that

Crypt(shrK A){|Number Tk ,Agent B,Key Kab,Ticket |} ∈ parts(spies evs)

then evs contains

Says Server A (Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |}).

Since A is uncompromised, the certificate is, via the regularity lemma, in-
tegral. Therefore, A learns that the session key was issued at time Tk .
Checking this timestamp against the current time prevents her from ac-
cepting an old key as fresh. A similar guarantee [39] holds for the certifi-
cate {|Na, B,Kab, X|}Ka of the shared-key Needham-Schroeder protocol (Fig-
ure 2.6). Since the nonce Na was previously issued by A and then received
along with the session key inside the integral certificate, A infers that the
session key is more recent than her nonce.

An analogous guarantee can be established about the certificate for B
(Theorem 6.5.3).

Theorem 6.5.3 (BK ticket authentic). If B is uncompromised and evs
is such that

6.5 Verifying BAN Kerberos 81

Crypt(shrK B){|Number Tk ,AgentA,Key Kab|} ∈ parts(spies evs)

then evs contains

Says Server A (Crypt(shrKA){|Number Tk ,Agent B,Key Kab,

Crypt(shrK B){|Number Tk ,AgentA,Key Kab|}|}).

Agent B is guaranteed that the session key was issued at time Tk , and
so can verify its freshness. The corresponding guarantee for the shared-key
Needham-Schroeder protocol [39] relies on the certificate {|K, A|}Kb . This time
B cannot decide whether he is accepting an old session key as fresh, an un-
certainty that raises the known chance of a replay attack.

6.5.4 Unicity

The Server issues fresh session keys, so the same key cannot be issued twice.
Precisely, we can enforce that, if a session key appears within two message
contexts, then the contexts must be the same (Theorem 6.5.4).

Theorem 6.5.4 (BK unique session keys). If evs contains

Says Server A (Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |})

and

Says Server A′ (Crypt(shrK A′){|Number Tk ′,AgentB′,Key Kab,Ticket ′|})

then

A = A′ and Tk = Tk ′ and B = B′ and Ticket = Ticket ′.

This result is often used when proving theorems that assume the event that
issues the session key. The Oops rule of the protocol model introduces an-
other event of the same form, but they can be derived to be identical if they
contain the same session key. A similar result could be enforced if two tickets
containing the same, confidential, session key appear in the traffic.

While Theorem 6.5.4 allows the Server to send two identical messages, we
can prove that this is impossible (Theorem 6.5.5). This is a stronger guarantee
because it states that the Server never issues the same session key more than
once for the same peers using the same timestamp and the same ticket.

Theorem 6.5.5 (BK Server Unique). If evs contains

Says Server A (Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |})

then

Unique (Says Server A (Crypt(shrK A)
{|Number Tk ,AgentB,Key Kab,Ticket |})) on evs.

82 6. Modelling Timestamping and Verifying a Classical Protocol

6.5.5 Confidentiality

The session key compromise theorem (BK analz insert freshK, omitted
here), which provides a crucial rewriting rule for the analz operator, can
be proved conventionally since BAN Kerberos does not use session keys to
encrypt other keys.

If the peers’ shared keys are uncompromised, then no protocol step re-
veals to the Spy the session key that the Server issues. Moreover, if the key
is not leaked by any accidents, then it can be proved to be confidential (The-
orem 6.5.6).

Theorem 6.5.6 (BK Confidentiality S). If A and B are uncompromised
and evs contains

Says Server A (Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |})

but does not contain Notes Spy {|Number Tk ,Key Kab|}, then evs is such that

Key Kab 6∈ analz(spies evs).

Even the application of the authenticity Theorem 6.5.2 still leaves the
strong assumption that no oops event occurred involving the session key
(Theorem 6.5.7), which we will relax later (§6.6).

Theorem 6.5.7 (BK Confidentiality A). If A and B are uncompromised
and evs is such that

Crypt(shrK A){|Number Tk ,Agent B,Key Kab,Ticket |} ∈ parts(spies evs)

but does not contain Notes Spy {|Number Tk ,Key Kab|}, then evs is such that

Key Kab 6∈ analz(spies evs).

Likewise, session key confidentiality can be proved from B’s viewpoint
(Theorem 6.5.8) by application of the authenticity Theorem 6.5.3 to the con-
fidentiality Theorem 6.5.6.

Theorem 6.5.8 (BK Confidentiality B). If A and B are uncompromised
and evs is such that

Crypt(shrK B){|Number Tk ,AgentA,Key Kab|} ∈ parts(spies evs)

but does not contain Notes Spy {|Number Tk ,Key Kab|}, then evs is such that

Key Kab 6∈ analz(spies evs).

6.5 Verifying BAN Kerberos 83

6.5.6 Authentication

One of the aims of BAN Kerberos is to enforce mutual agent authentication.
The authenticator of the third message should authenticate A to B, and the
fourth message as a whole should authenticate B to A. This section shows
that the protocol establishes mutual weak agreement, while a few extensions
to the approach will show that it also establishes mutual non-injective agree-
ment on the session key (§8.3).

Tracing back the originator of the authenticator requires the session key
that seals it to be confidential. Thus, the assumptions of the confidentiality
Theorem 6.5.8 must be allowed, since we are reasoning from B’s viewpoint.
In these circumstances, the authenticator can be proved to have originated
with A during the third step of the protocol (Theorem 6.5.9). Recall that the
suffix of the theorem name indicates that the confidentiality assumption was
relaxed by the appropriate formal argument.

Theorem 6.5.9 (BK B authenticates A r). If A and B are uncompro-
mised and evs is such that

Crypt(shrK B){|Number Tk ,AgentA,Key Kab|} ∈ parts(spies evs) and
CryptKab{|AgentA,Number Ta|} ∈ parts(spies evs)

and evs does not contain Notes Spy {|Number Tk ,Key Kab|}, then it contains

Says A B {|Crypt(shrK B){|Number Tk ,AgentA,Key Kab|},
CryptKab{|AgentA,Number Ta|}|}.

This theorem is useful to B. It says that, if B receives the ticket, extracts
the session key, and then receives the authenticator that is sealed with it, he
can infer something useful: A was alive and meant to communicate with him
by sending him the concatenated message. The theorem does not express A’s
knowledge of Kab or Ta.

The same strategy proves that a certificate that has the form of the
fourth message of the protocol was indeed created during the fourth step
(Theorem 6.5.10). The necessary condition that the certificate be sealed with
a confidential session key is conveyed via an appeal to the confidentiality
Theorem 6.5.7. As usual, the suffix of the theorem name indicates that the
confidentiality assumption was relaxed by the appropriate formal argument.

Theorem 6.5.10 (BK A authenticates B r). If A and B are uncompro-
mised and evs is such that

Crypt(shrK A){|Number Tk ,Agent B,Key Kab,Ticket |}
∈ parts(spies evs) and

CryptKab(Number Ta) ∈ parts(spies evs)

and evs does not contain Notes Spy {|Number Tk ,Key Kab|}, then it contains

Says B A (CryptKab(Number Ta)).

84 6. Modelling Timestamping and Verifying a Classical Protocol

This theorem is useful to A: when A gets hold of the two suitable certifi-
cates, she infers that B was alive and meant to communicate with her. The
theorem does not express B’s knowledge of Kab or Ta.

6.5.7 Key Distribution

We want to establish whether, at the end of a protocol session, the peers have
evidence that they share a session key, which is a major goal of the protocol.

In order to decrypt the authenticator {|A,Ta|}Kab , agent B must learn Kab
from the ticket {|Tk , A,Kab|}Kb . Under the strong assumption that the session
key was not leaked by accident, B appeals to the confidentiality argument
and concludes that Kab is confidential. Therefore, the authenticator cannot
have been faked and, so, must have been sent by A in the third step of the
protocol. The authentication Theorem 6.5.9 establishes this formally. Also,
since A is the true creator of the authenticator, she must know the session key
to seal it. This notion cannot be captured formally in the current approach:
in general, when an event Says A B X occurs, A may just be forwarding X
and therefore have no knowledge about its contents.

To overcome this limitation, we will extend the Inductive Method in Chap-
ter 8 to capture the notion of an agent’s being the true creator of a message.
Modelling message reception will provide an alternative reasoning: when B
receives the ticket and the authenticator, A must have previously received an
instance of the second message and so must have learnt the session key.

The authentication Theorem 6.5.10 allows the same considerations from
A’s viewpoint. Although the certificate {|Ta|}Kab is proved to have been sent
by B, proving B’s knowledge of the session key requires, as mentioned above,
further modelling.

6.6 A Temporal Modelling of Accidents

All confidentiality and authentication theorems require the condition that
no oops event occurred, but no agent other than the Spy can verify this
in practice. Can this condition be considered part of the agents’ minimal
trust? An affirmative answer seems reasonable because accidents are always
unforseen. In consequence, the protocol makes session key confidentiality and
authentication available to the peers (§2.2.4 and Chapter 5).

This delicate point raises concern that allowing the leaking of any session
key at any time may produce an overly pessimistic threat model. We observe
that the longer a message component is in the traffic, the higher is the risk
that the Spy may get hold of it. In particular, the probability that a session
key becomes compromised increases over time.

In light of these considerations, we can refine the threat model by in-
troducing a temporal modelling of accidents. We assume that a session key

6.6 A Temporal Modelling of Accidents 85

cannot be leaked as long as its lifetime has not expired, namely the key cannot
be leaked as long as it is still valid. Incorporating the change in the protocol
model requires adding the precondition

expiredKTk evsO

to the Oops rule. Hence, session-key leaks may only happen to histories that
have evolved for longer than sesKlife after the time of issue of the session key.
In the new model, all confidentiality and authentication theorems (6.5.6 to
6.5.10) can be refined so as to rest on the assumption ¬expiredKTk evs,
namely “Tk has not expired on evs,” instead of “evs does not contain
Notes Spy {|Number T,Key Kab|} for any T .” They are omitted here but can
be found in the repository [33, 34]. Their names have suffix temporal.

Any agent can check the new temporal assumption by verifying that the
current time does not differ from the timestamp by more than the allowed
lifetime. Therefore, all confidentiality and authentication guarantees are ap-
plicable by (and the corresponding goals available to) their respective bene-
ficiaries in new the threat model. This further confirms that studying adher-
ence to a principle of protocol design or analysis is subject to the assumed
threat model. Our conclusions are the same under the two threat models but
are easier to derive under the temporal modelling of accidents, provided that
each agent’s minimal trust has all the network clocks synchronised.

The temporal modelling of accidents will be adopted throughout this book
for the analysis of those protocols that make use of timestamps: Kerberos IV
(Chapter 7) and Kerberos V (Chapter 9).

7. Verifying a Deployed Protocol

Kerberos IV is the first deployed protocol to be modelled and verified
using the Inductive Method. A weakness is discovered in its manage-
ment of timestamps, leading to realistic confidentiality attacks on a
class of session keys and to corresponding authentication attacks.

The most commonly deployed variant of the Kerberos protocol is Version
IV [121]. Kerberos IV is a password-based system for authentication and
authorisation over local area networks. It was developed during the late 1980s
with the aim of implementing a robust strategy for single access: once a
user authenticates himself to a network machine, the process of obtaining
authorisation to access a network service should be completely transparent
to him. Hence, the user should only have to enter his password once during the
authentication phase, and never during the subsequent authorisation phases.
Kerberos IV pursues its aim by delivering certain credentials to the login
process of each user during the authentication phase. These credentials are to
be used with a suitable trusted Server during any subsequent authorisation
phase. Receiving, storing and using the credentials are transparent to the
user.

Both trusted Servers of the authentication phase and of the authorisa-
tion phase are modelled below. Each of them issues a session key that is to
be considered valid within a specific lifetime. The session key issued by the
first Server is used to encrypt the one issued by the second Server. This fea-
ture greatly complicates the verification of the confidentiality goals [40], but a
technique for modelling the association between two message components can
be reused from the analysis of the Yahalom protocol [135]. The threat model
adopted for this analysis is conventional Dolev-Yao’s extended with agents’
compromises (§3.9) and with the temporal modelling of accidents introduced
on BAN Kerberos (§6.6). First, the authenticity, unicity, confidentiality, au-
thentication and key distribution goals are investigated. Then, in verifying
adherence to our principle of goal availability, we discover a weakness in the
management of timestamps. In our threat model, the weakness leads to a
simple confidentiality attack on a session key, which is then used to mount
an authentication attack: the Spy may access a network service using a ses-
sion key that belongs to a user who is no longer present on the network. Our
proofs suggest a simple fix, which can be formally verified to be effective.

88 7. Verifying a Deployed Protocol

To our knowledge, this is the first mechanised proof of correctness for the
complete protocol, although some related work exists. Mitchell et al. [123]
model check a highly simplified version of the protocol, which derives from
Kohl et al. [101]. Neither are timestamps included in their model, nor are
multiple runs allowed. They find no attacks on a system of size 3 — consisting
of an initiator, the Kerberos Servers and a responder — and a “redirection”
attack on a system of size four, including two responders, which the full
Kerberos IV prevents by means of explicitness (§7.1.2).

We earlier analysed the protocol by ASMs (§2.1.1) with Riccobene [45],
formalising the actions of an unbounded population of agents by means of
a detailed algebraic model. An intuitive if-then-else language was used to
formalise the protocol steps, but the Spy’s illegal activity was defined ad hoc
for the protocol. The present inductive analysis starts off from the ASMs’
formal specification rather than from the informal technical report about the
protocol [121]. This made the development of the inductive protocol model
considerably faster than was expected. The human analyser’s digestion of
informal specifications may turn out to be very time consuming, as our sub-
sequent work on the SET protocol would confirm [37].

This chapter describes the three phases of Kerberos IV (§7.1), its inductive
modelling (§7.2) and its mechanised verification (§7.3).

7.1 The Kerberos IV Protocol

Kerberos IV is essentially a key distribution protocol. It relies on the Kerberos
System (Figure 7.1), which comprises two trusted Servers and a database
containing all users’ passwords sealed using the standard Unix one-way en-
cryption algorithm.

A B

1 2 3 4

5
6

database

Kas Tgs

Kerberos System

Fig. 7.1. Kerberos IV layout

7.1 The Kerberos IV Protocol 89

7.1.1 Overview

Once a user types in his identifier and password, his login process seals the
password using the Unix algorithm. This process is the agent who initiates
the protocol (recall that we view agents as processes, §3.3). The full proto-
col consists of three phases, only the first being compulsory. The first phase,
Authentication, comprises the first two protocol steps and serves to au-
thenticate the initiator to the Kerberos System, specifically to the Kerberos
Authentication Server, Kas for short. If the user is registered, the two agents
share the sealed password as a long-term secret, which constitutes the ini-
tiator’s shared key: the initiator has computed it, while Kas has looked it
up in its database. Using this secret, Kas issues some authorisation creden-
tials that the initiator will use in the second phase, Authorisation, which
comprises the third and fourth protocol steps. This phase only occurs when
the initiator, who is currently running on a workstation, requires a network
service. Using the previously obtained authorisation credentials, the initiator
contacts the Kerberos System, specifically the Ticket Granting Server, Tgs
for short. The initiator obtains some service credentials to use in the final
phase, Service, in order to access the requested service.

Observe that, while Kas does not have a long-term key of its own, Tgs,
like all other agents, does have one that is shared with Kas.

7.1.2 Details

The complete protocol is presented in Figure 7.2.
During the Authentication phase, the initiator A queries Kas with her

identity, Tgs and a timestamp T1 ; Kas issues a session key and looks up
A’s shared key in the database. It replies with a message sealed with A’s
shared key containing the session key, its timestamp Ta, Tgs and a ticket.
The session key and the ticket are the credentials to use in the subsequent
authorisation phase, so we address them as authkey and authticket respec-
tively. The authticket is sealed with Tgs’s shared key and contains a copy of
the authkey, its timestamp and its peers. The lifetime of an authkey is several
hours.

If T1 is not much older than Ta with respect to a given lifetime, then A
is assured that Kas’s reply was prompt. If this check is affirmative, A may
want to start the Authorisation phase. She sends Tgs a three-component
message including the authticket, an authenticator sealed with the authkey
containing her identity and a new timestamp T2 , and B’s identity. The life-
time of an authenticator is several seconds. Upon reception of the message,
Tgs decrypts the authticket, extracts the authkey and checks the validity of
its timestamp Ta, namely that Ta is not too old with respect to the life-
time of authkeys. Then, Tgs decrypts the authenticator using the authkey
and checks the validity of T2 with respect to the lifetime of authenticators.
Finally, Tgs issues a new session key and looks up B’s shared key in the

90 7. Verifying a Deployed Protocol

Authentication

1. A → Kas : A, Tgs,T1

2. Kas → A : {|authK , Tgs,Ta, {|A, Tgs, authK ,Ta|}Ktgs| {z }
authTicket

|}Ka

Authorisation

3. A → Tgs : {|A, Tgs, authK ,Ta|}Ktgs| {z }
authTicket

, {|A,T2 |}authK| {z }
authenticator

, B

4. Tgs → A : {|servK , B,Ts, {|A, B, servK ,Ts|}Kb| {z }
servTicket

|}authK

Service

5. A → B : {|A, B, servK ,Ts|}Kb| {z }
servTicket

, {|A,T3 |}servK| {z }
authenticator

6. B → A : {|T3 + 1|}servK

Fig. 7.2. Kerberos IV protocol

database. It replies with a message sealed with the authkey containing the
new session key, its timestamp Ts, B and a ticket. The session key and the
ticket are the credentials to use in the subsequent service phase, so we address
them as servkey and servticket respectively. The servticket is sealed with B’s
shared key and contains a copy of the servkey, its timestamp and its peers.
The lifetime of a servkey is a few minutes.

If T2 is not much older than Ts with respect to a given lifetime, then
A is assured that Tgs’s reply was prompt. If so, A may start the Service
phase. She sends B a two-component message including the servticket and
an authenticator sealed with the servkey containing her identity and a new
timestamp T3 . Upon reception of the message, B decrypts the servticket,
extracts the servkey and checks the validity of its timestamp Ts. Then, B
decrypts the authenticator using the servkey and checks the validity of T3 .
Finally, B increments T3 , seals it with the servkey, and sends it back to A.

In a simplified version of the protocol [101], the fourth message does
not include either of the two occurrences of B’s identity. The Spy can then
mount the mentioned redirection attack [123]: she changes B’s identity to
some compromised C’s (or her own) in the third message; she intercepts
the fifth message, decrypts the servticket, extracts the servkey, decrypts the
authenticator, and extracts the timestamp T3 ; she forges the sixth message.
Hence, A believes to have completed a protocol session with B when in fact

7.2 Modelling Kerberos IV 91

she has been redirected to someone else and B has never participated. The
complete Kerberos IV clearly does not suffer this attack.

7.2 Modelling Kerberos IV

To model the two trusted Servers, we might modify the Isabelle datatype of
agents (§3.3) as

datatype agent , Kas

Tgs

Friend nat

Spy

Then, the definition of initState would have to be updated to allow both
trusted Servers to know all agents’ shared keys. Also, both Kas and Tgs would
have to be assumed uncompromised. However, we get the same outcome from
a less invasive formalisation, which merely sees the two Servers as translations

Kas , Server

Tgs , Friend 0

Friendly agents remain an infinite population. Because Server already is as-
sumed uncompromised, we only need to state that so is Tgs.

The protocol reliance on time is identical to that of BAN Kerberos, so the
same discrete formalisation of the current time of a trace (§6.4) is adopted
here. We also need to define three natural numbers, authKlife, servKlife,
authlife, formalising respectively the lifetimes of an authkey, a servkey, and
an authenticator. Three intuitive binary predicates

expiredAK, expiredSK, expiredA : [nat, event list]

check their respective validities, namely the validities of the timestamps as-
sociated with them. They can be easily defined as

expiredAK Ta evs , (CT evs)− Ta > authKlife

expiredSK Ts evs , (CT evs)− Ts > servKlife

expiredA T evs , (CT evs)− T > authlife

When any of these predicates hold for some timestamp and some trace, we
say that the timestamp has expired or that the corresponding item (a key or
an authenticator) has expired on that trace.

A further lifetime, replylife, indicates the validity interval of any trusted
Server’s replies. A suitable binary predicate over natural numbers, defined as

valid T wrt T ′ , T ≤ T ′ + replylife

92 7. Verifying a Deployed Protocol

checks that a timestamp is issued within such a lifetime after the instant
marked by another timestamp. Agents operate this check to discard late
Servers’ replies, which may be due either to the Servers’ temporary mal-
function or to network latency. Conversely, those replies arriving within the
specified lifetime are more reliable.

The constant kerbIV represents the formal protocol model and is defined
by induction below. It is declared as a set of lists of events, and comes with
the file KerberosIV.thy (Figure 3.1).

7.2.1 Basics

The inductive definition of kerbIV contains two basic rules (Figure 7.3). The
first sets the base of the induction introducing the empty trace in the protocol
model (Nil). The second models the Spy’s illegal activity allowing the Spy
to send any agent any fake message derived from her active analysis of the
traffic (Fake).

Nil :
[] ∈ kerbIV

Fake :
[[evsF ∈ kerbIV; X ∈ synth (analz (spies evsF))]]
=⇒ Says Spy B X # evsF ∈ kerbIV

Fig. 7.3. Inductive model of Kerberos IV: basics

7.2.2 Authentication Phase

The protocol initiator A must go through the authentication phase with Kas
(Figure 7.4).

Any trace, including the empty one, can be extended by the event for-
malising the first message of the protocol (KIV1). This is faithful to the real
world, where any agent, including the Spy, may decide to initiate a protocol
session at any time. In the model, Kas’s reply is subject to the previous oc-
currence of a suitable request from some agent (KIV2), whereas in the real
world Kas does not operate until it actually receives the request. The model
cannot be that precise at this stage because we have not yet formalised mes-
sage reception (§8.2). It can be seen that Kas issues a fresh authkey, which is
a symmetric key.

7.2.3 Authorisation Phase

The initiator A may require authorisation to a network service (Figure 7.5).

7.2 Modelling Kerberos IV 93

KIV1 :
evs1 ∈ kerbIV
=⇒ Says A Kas {|Agent A, Agent Tgs, Number (CT evs1)|}

evs1 ∈ kerbIV

KIV2 :
[[evs2 ∈ kerbIV; Key authK 6∈ used evs2; authK ∈ symKeys;
Says A’ Kas {|Agent A, Agent B, Number T1|} ∈ set evs2]]

=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number (CT evs2),
Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key authK, Number (CT evs2)|}|})
evs2 ∈ kerbIV

Fig. 7.4. Inductive model of Kerberos IV: authentication phase

Before contacting Tgs, A checks that someone issued a message containing
the authorisation credentials for her. While the message must have a specific
form, its sender can be anyone, even the Spy. The reception of such a message
is, as above, implicit (KIV3). Observe that A checks that the authkey was not
issued too late after her request. She does not need to check that the authkey
has not expired as this is the Kerberos Servers’ concern (the check was stated
in a previous formalisation [40]). Once a trace records a query is the expected
form, Tgs may issue its reply, which contains a fresh servkey, provided that
neither the authkey nor the authenticator have expired (KIV4).

7.2.4 Service Phase

This phase can be modelled (Figure 7.6) by the same layout as that used for
the authorisation phase. The initiator A can contact the requested service
B only if the trace records the issue of a servkey within the validity interval
from A’s request. As with the authkey, A is not concerned that the servkey
has not expired (KIV5). Before acknowledging A’s request, B checks that
neither the servkey nor the authenticator have expired (KIV6). As with BAN
Kerberos, we decide not to model the increment to the timestamp of the last
step because it is imprecise: B’s reply may occur at a different time (§§7.3.6
and 8.4). From the verification standpoint, it matters that the last message
is distinguishable by its form, regardless of the increment, from all others in
the protocol.

7.2.5 Accidents

Authkeys are operationally different from servkeys, although they are all
session keys. The two types of keys are associated with timestamps that are
in turn associated with different lifetimes. Also, while authkeys are issued by

94 7. Verifying a Deployed Protocol

KIV3 :
[[evs3 ∈ kerbIV;
Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs3;
Says Kas’ A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

authTicket|}) ∈ set evs3;
valid Ta wrt T1]]

=⇒ Says A Tgs {|authTicket, Crypt authK {|Agent A, Number (CT evs3)|},
Agent B|}

evs3 ∈ kerbIV

KIV4 :
[[evs4 ∈ kerbIV; Key servK 6∈ used evs4; B 6= Tgs;
authK ∈ symKeys; servK ∈ symKeys;
Says A’ Tgs {|Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key authK, Number Ta|},
Crypt authK {|Agent A, Number T2|}, Agent B|} ∈ set evs4;

¬ expiredAK Ta evs4; ¬ expiredA T2 evs4]]
=⇒ Says Tgs A (Crypt authK {|Key servK, Agent B, Number (CT evs4),

Crypt (shrK B) {|Agent A, Agent B,
Key servK, Number (CT evs4)|}|})

evs4 ∈ kerbIV

Fig. 7.5. Inductive model of Kerberos IV: authorisation phase

Kas and are meant to be used with Tgs, servkeys are issued by Tgs and are
meant to be used with the network services. Furthermore, when an authkey
expires, the corresponding user is logged out from the workstation and all
his processes are killed. By contrast, when a servkey expires, the intended
network service will no longer accept it, so the initiator must undertake a
new authorisation phase.

Our threat model allows for accidental leaks of session keys (Figure 7.7)
using the temporal modelling of accidents seen above (§6.6). An authkey can
be noted by the Spy together with its timestamp and its peers provided that it
has expired (OopsA), as can a servkey (OopsS). It is interesting to investigate
whether the Spy can exploit expired session keys to get hold of non-expired
ones, namely whether the attack cascades. This would be a major success for
her, since the model allows the reuse of a session key within its lifetime, as
the real world does.

7.3 Verifying Kerberos IV

Kerberos IV makes a peculiar use of session keys: Tgs employs an authkey
to encrypt a servkey in the fourth message. This feature greatly complicates
the verification of the confidentiality goals. Our proofs will show that syn-

7.3 Verifying Kerberos IV 95

KIV5 :
[[evs5 ∈ kerbIV; authK ∈ symKeys; servK ∈ symKeys;
Says A Tgs {|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B|}
∈ set evs5;

Says Tgs’ A (Crypt authK {|Key servK, Agent B, Number Ts,
servTicket|}) ∈ set evs5;

valid Ts wrt T2]]
=⇒ Says A B {|servTicket, Crypt servK {|Agent A, Number (CT evs5)|}|}

evs5 ∈ kerbIV

KIV6 :
[[evs6 ∈ kerbIV;
Says A’ B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|},

Crypt servK {|Agent A, Number T3|}|} ∈ set evs6;
¬ expiredSK Ts evs6; ¬ expiredA T3 evs6]]

=⇒ Says B A (Crypt servK (Number T3)) # evs6 ∈ kerbIV

Fig. 7.6. Inductive model of Kerberos IV: service phase

OopsA :
[[evsOa ∈ kerbIV;
Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

authTicket|}) ∈ set evsOa;
expiredAK Ta evsOa]]

=⇒ Notes Spy {|Agent A, Agent Tgs, Number Ta, Key authK|}
evsOa ∈ kerbIV

OopsS :
[[evsOs ∈ kerbIV;
Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})
∈ set evsOs;

expiredSK Ts evsOs]]
=⇒ Notes Spy {|Agent A, Agent B, Number Ts, Key servK|}

evsOs ∈ kerbIV

Fig. 7.7. Inductive model of Kerberos IV: accidents

chronising the issuing times of the two types of keys is crucial to making the
goal of servkey confidentiality available to the protocol responder.

This section introduces suitable abbreviations to distinguish the two types
of session keys or to express the association between authkeys and servkeys,
and then presents all goals we verified of Kerberos IV. In the following, evs is
a generic trace of the set kerbIV. The theorem names follow the usual naming
conventions (§1.3.2).

96 7. Verifying a Deployed Protocol

7.3.1 Reliability of the Kerberos IV Model

Fragments of the proof script pertaining to the following guarantees can be
found in Appendix A.1. To address the authkeys formally, we declare the
function

authKeys : event list −→ key set

so that authKeys evs yields all session keys that Kas issues in the trace evs,
ignoring any eventual repetitions. Its definition is

authKeys evs ,

{authK | ∃ A Ts |
Says Kas A (Crypt(shrK A){|Key authK ,AgentTgs,Number Ts,

Crypt(shrK Tgs){|AgentA,AgentTgs,

Key authK ,Number Ts|}|})
∈ set evs}

Several lemmas are needed for the symbolic evaluation of this function.
For example, one states formally that no authkeys appear on an empty
trace (Lemma 7.3.1), and another signifies that Kas introduces an authkey
(Lemma 7.3.2).

Lemma 7.3.1 (KIV authKeys empty). authKeys [] = {}.

Lemma 7.3.2 (KIV authKeys insert). Trace evs is such that

authKeys(Says Kas A (Crypt(shrK A){|Key authK ,AgentTgs,Number Ta,

authTicket |})# evs)
= {authK} ∪ (authKeys evs).

Once a formalisation for the authkeys is available, the servkeys in a trace
evs can be formalised as those keys that do not belong either to the range of
shrK (so they are session keys) or to authKeys evs (so they are not authkeys).

Our model Kas can be proved to be reliable (Theorem 7.3.1). When ad-
dressing a message to an agent A, Kas seals it with A’s shared key and includes
in it a session key that is an authkey along with a well-formed authticket.
Using the function before (defined in §4.1), we establish that the authkey is
fresh when it is issued and its timestamp is chosen as the current time.

Theorem 7.3.1 (KIV Says Kas message form). If evs contains

ev =
Says Kas A (Crypt K{|Key authK ,AgentPeer ,Number Ta, authTicket |})

then

7.3 Verifying Kerberos IV 97

K = shrK A and Peer = Tgs and
authK ∈ symKeys and authK 6∈ range shrK and
authTicket = Crypt(shrK Tgs){|Agent A,Agent Tgs,

Key authK ,Number Ta|}

and evs is such that

authK ∈ authKeys evs and
Key authK 6∈ used(before ev on evs) and
Ta = CT(before ev on evs).

An analogous guarantee enforces the reliability of the model Tgs (Theo-
rem 7.3.2). An authkey is used to seal the message, which includes a fresh
servkey and the servticket that quotes it.

Theorem 7.3.2 (KIV Says Tgs message form). If evs contains

ev =
Says Tgs A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |})

then

B is not Tgs and
authK ∈ symKeys and authK 6∈ range shrK and
servK ∈ symKeys and servK 6∈ range shrK and
servTicket = Crypt(shrK B){|AgentA,AgentB,

Key servK ,Number Ts|}

and evs is such that

authK ∈ authKeys evs and servK /∈ authKeys evs and
Key servK 6∈ used(before ev on evs) and
Ts = CT(before ev on evs).

As can be expected, to obtain these two theorems, the general method
for proving the reliability theorems (§4.1) must be enriched with frequent
appeals to Lemmas 7.3.1 and 7.3.2.

7.3.2 Regularity

Kerberos IV never sends shared keys on the network, so a shared key is avail-
able to the Spy if and only if its owner is compromised. The corresponding
regularity lemma has the usual formulation (Lemma 7.3.3).

Lemma 7.3.3 (KIV Spy analz shrK). Trace evs is such that
Key(shrK A) ∈ analz(spies evs) if and only if A ∈ bad.

98 7. Verifying a Deployed Protocol

7.3.3 Authenticity

The protocol intends to deliver an authkey to A and Tgs and a servkey to A
and B. Determining the originator of a certificate that contains a session key
will confirm the authenticity of both the certificate and the key. As usual,
we follow the principle of goal availability and perform the analysis from
each agent’s viewpoint. All proofs are carried out according to the methods
described above (§4.3).

The instance of the second message that is sealed with A’s shared key car-
ries the authkey meant for A. An appeal to the regularity lemma guarantees
that the certificate is tamperproof, so induction proves it to have originated
with Kas (Theorem 7.3.3). Observe that the theorem becomes useful to A
only upon reception of the certificate.

Theorem 7.3.3 (KIV authK authentic). If A is uncompromised and evs
is such that

Crypt(shrK A){|Key authK ,Agent Tgs,Number Ta, authTicket |}
∈ parts(spies evs)

then evs contains

Says Kas A (Crypt(shrK A){|Key authK ,AgentTgs,

Number Ta, authTicket |}).

The same guarantee can be enforced on the certificate that delivers the
authkey to Tgs, the authticket (Theorem 7.3.4). Recall that Tgs is uncom-
promised.

Theorem 7.3.4 (KIV authTicket authentic). If evs is such that

Crypt(shrK Tgs){|Agent A,Agent Tgs,Key authK ,Number Ta|}
∈ parts(spies evs)

then evs contains

Says Kas A (Crypt(shrK A){|Key authK ,AgentTgs,Number Ta,

Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,Number Ta|}|}).

We now move on to investigating the authenticity of the servkey. The
fourth message, which delivers it to A, is sealed with the authkey. Clearly,
this must be A’s authkey in order for the message to be intelligible to A.
Since the authkey is not a shared key, the regularity lemma cannot help, so
the authkey must be explicitly assumed to be confidential. The second and
the fourth messages have the same structure. Theorem 7.3.3 pinpoints the
second message by explicitly referring to a shared key as an encrypting key.
By contrast, the fourth message uses a session key as an encrypting key, so
this assumption must be made to investigate the authenticity of the message
(Theorem 7.3.5). This version of the theorem is not applicable by A because
of the confidentiality assumption on the authkey, which A cannot verify in

7.3 Verifying Kerberos IV 99

practice. However, this assumption can be relaxed by the confidentiality ar-
gument (§7.3.5).

Theorem 7.3.5 (KIV servK authentic). If evs is such that

Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and

Key authK 6∈ analz(spies evs) and authK 6∈ range shrK

then, for some A, evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |}).

As session keys typically differ in length from shared keys, it is fair to conclude
that the authkey’s not being a shared key is a verifiable assumption, and
hence not a part of A’s minimal trust. However, a variant of this theorem
can be proved using another fact to discern between the second and the
fourth messages: the latter states an agent that is certainly different from Tgs.
So, the same conclusion holds by replacing the assumption on the authkey
with B’s not being Tgs (KIV servK authentic bis, omitted here), which A
can easily check by inspecting the fourth message. Another replacement is
the entire event whereby Kas sends the authkey (KIV servK authentic ter,
omitted here). That event also binds peer A, so the conclusion does not need
the existential quantification. Each version can be more convenient than the
other to apply at times, but for simplicity we will make no distinction in the
following.

Although the servticket has the same structure as the authticket, the
former is sealed with the shared key belonging to an agent different from
Tgs. The regularity lemma must be applied to investigate the authenticity of
the servticket. We prove (Theorem 7.3.6) that Tgs indeed sent the servticket
encrypted under a session key that originated with Kas.

Theorem 7.3.6 (KIV servTicket authentic). If B is uncompromised
and is not Tgs and evs is such that

Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|}
∈ parts(spies evs)

then, for some authK and Ta, evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,Number Ts,
Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|}|}) and

Says Kas A (Crypt(shrK A){|Key authK ,AgentTgs,Number Ta,

Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,Number Ta|}|}).

100 7. Verifying a Deployed Protocol

7.3.4 Unicity

Since Kas issues fresh authkeys, the classical unicity theorem can be used to
state that an authkey cannot appear in two different messages. Two other
theorems rest on the Unique predicate (§4.4) to state that Kas only sends each
authkey once, and that Tgs only sends each servkey once (KIV Kas Unique

and KIV Tgs Unique, omitted here).
Both the authticket and the servticket have the same structure and con-

tain a fresh session key, so we can establish a useful unicity result that ap-
plies to either ticket under the assumption that the session key is confidential
(Theorem 7.3.7). Relaxing this assumption by the confidentiality argument
(§7.3.5) makes the theorem applicable by either Tgs or B, and the corre-
sponding goals available to them.

Theorem 7.3.7 (KIV unique CryptKey). If evs is such that

Key K 6∈ analz(spies evs)

and

Crypt(shrK P){|AgentQ,AgentP,Key K, T |} ∈ parts(spies evs) and
Crypt(shrK P ′){|AgentQ′,AgentP ′,Key K, T ′|} ∈ parts(spies evs)

then

P = P ′ and Q = Q′ and T = T ′.

7.3.5 Confidentiality

Each authkey can be used to encrypt several servkeys because an agent, once
authenticated, can request more than one service. Therefore, we expect that
the compromise of an authkey may cascade to several servkeys. Conversely,
servkeys are never used to encrypt any keys, so the compromise of a servkey
should not affect other keys.

These observations can be proved to hold formally, providing three sig-
nificant session key compromise theorems. They also become fundamental
rewrite rules for the analz operator when proving the session key confiden-
tiality theorems, the actual confidentiality goals of the protocol.

Session key compromise. Fragments of the proof script pertaining to the
following guarantees can be found in Appendix A.2. The association of au-
thkeys with servkeys in Kerberos IV resembles the association of session keys
with nonces in the Yahalom protocol [135]. These relations can be formalised
in a similar fashion. We declare the predicate

AKcryptSK : [key, key, event list]

and want it to hold for a trace featuring an event that associates an authkey
with a servkey. It can be defined as

7.3 Verifying Kerberos IV 101

AKcryptSK authK servK evs ,

∃ A B Ts |
Says Tgs A (Crypt authK{|Key servK ,Agent B,Number Ts,

Crypt(shrK B){|AgentA,AgentB,

Key servK ,Number Ts|}|})
∈ set evs

It is clear that the association is established by Tgs. Several lemmas must
be proved about the predicate that formalises it. Chiefly, no keys encrypt an
authkey or a shared key (Lemma 7.3.4); a servkey does not encrypt any keys
(Lemma 7.3.5); and only a single authkey encrypts a servkey (Lemma 7.3.6).

Lemma 7.3.4 (KIV authKeys are not AKcryptSK). If evs is such
that

K ∈ authKeys evs or K ∈ range shrK

then K ∈ symKeys and, for any K ′, evs is such that

¬AKcryptSK K ′ K evs.

Lemma 7.3.5 (KIV not authKeys not AKcryptSK). If evs is such
that

servK 6∈ authKeys evs and servK 6∈ range shrK

then, for any K, evs is such that

¬AKcryptSK servK K evs.

Lemma 7.3.6 (KIV not different AKcryptSK). If evs is such that

AKcryptSK authK servK evs

and K is not authK , then servK ∈ symKeys and evs is such that

¬AKcryptSK K servK evs.

If a session key K is not associated with a key K ′ by the predicate
AKcryptSK, then the key K is never used to encrypt K ′, so the compromise
of K should not increase the Spy’s chances of discovering K ′. Expressing this
formally provides an essential lemma (Lemma 7.3.7), where K is generalised
to a set KK . The logical disjunction has higher priority than the logical coim-
plication, as stated above (§1.3.3). As for notation, −(range shrK) indicates
the set of all keys that are not shared keys, − being the set complement
operator. While KK is a set of keys, Key 8KK yields the corresponding set
of messages, 8 being the image operator. The proof is rather long and com-
plicated: simplification takes three quarters of the total computational time,
and several case analyses are required afterwards. The assumptions of the
theorem hold, for example, of an authkey K and a servkey K ′, provided that
K has not been used to encrypt K ′.

102 7. Verifying a Deployed Protocol

Lemma 7.3.7 (KIV Key analz image Key). If K ′ ∈ symKeys and

KK ⊆ −(range shrK)

and, for any K ∈ KK, evs is such that

¬AKcryptSK K K ′ evs

then evs is such that

Key K ′ ∈ analz(Key 8KK ∪ (spies evs)) if and only if
K ′ ∈ KK or Key K ′ ∈ analz(spies evs).

The first session key compromise theorem concerns authkeys and shar-
ed keys: they can be proved to be unaffected by the accidental loss of any
session key (Theorem 7.3.8). The proof follows from applying Lemma 7.3.4 to
Lemma 7.3.7. Recall that authkeys are particularly valuable secrets because
of their long lifetime.

Theorem 7.3.8 (KIV analz insert freshK1). If evs is such that

K ∈ authKeys evs or K ∈ range shrK

and K ′ 6∈ range shrK, then evs is such that

Key K ∈ analz({Key K ′} ∪ (spies evs)) if and only if
K = K ′ or Key K ∈ analz(spies evs).

It can also be proved that no cryptographic key is affected by the loss of
a servkey (Theorem 7.3.9). Observe that no particular assumptions bind K,
which is merely a symmetric key. The proof follows from the application of
Lemma 7.3.5 to Lemma 7.3.7.

Theorem 7.3.9 (KIV analz insert freshK2). If evs is such that

servK 6∈ authKeys evs and servK 6∈ range shrK

and K ∈ symKeys, then evs is such that

Key K ∈ analz({Key servK} ∪ (spies evs)) if and only if
K = servK or Key K ∈ analz(spies evs).

Another theorem concerns the servkeys: given the authkey that is as-
sociated with a servkey, no other authkey would help the Spy discover the
servkey (Theorem 7.3.10). The proof follows from applying Lemma 7.3.6 to
Lemma 7.3.7. A variant of this theorem, where the definition of AKcryptSK is
unfolded (KIV analz insert freshK3 bis, omitted here), is more straightfor-
ward to use in practice.

Theorem 7.3.10 (KIV analz insert freshK3). If evs is such that

AKcryptSK authK servK evs

and K is not authK , and K 6∈ range shrK, then evs is such that

Key servK ∈ analz({Key K} ∪ (spies evs)) if and only if
servK = K or Key servK ∈ analz(spies evs).

7.3 Verifying Kerberos IV 103

Session key confidentiality. Fragments of the proof script pertaining to
the following guarantees can be found in Appendix A.3. Session key confi-
dentiality theorems express the confidentiality of the session keys. Following
the general method, we first verify the property from the viewpoints of the
Servers. We then refine the findings via the authenticity theorems to study
conformity to the principle of goal availability.

If an authkey has not expired, then it cannot be lost by accident via
the OopsA rule. Assuming that its peer is uncompromised assures that the
key travels safely inside the second message of the protocol. Under these as-
sumptions, the key confidentiality can be enforced from the viewpoint of Kas
(Theorem 7.3.11) by frequent appeals to Theorems 7.3.8 and 7.3.10. Because
Kas is reliable, the theorem does not need to insist that the encrypting key
is A’s shared key.

Theorem 7.3.11 (KIV Confidentiality Kas). If A is uncompromised
and evs contains

Says Kas A (Crypt(shrK A){|Key authK ,AgentTgs,

Number Ta, authTicket |})

and is such that ¬expiredAKTa evs, then evs is such that

Key authK 6∈ analz(spies evs).

Refining this result by the authenticity Theorem 7.3.3 produces a confiden-
tiality guarantee (KIV Confidentiality Auth A, omitted here) that A can
apply within her minimal trust. Hence, the protocol makes authkey confiden-
tiality available to A in the stated threat model.

An analogous result enforces the confidentiality of the servkey from Tgs’s
viewpoint under the assumption that the key has not expired and that the
authkey associated with it is confidential (Theorem 7.3.12). Frequent appeals
to Theorems 7.3.8, 7.3.9 and 7.3.10 are necessary to the proof. The assump-
tion of authkey confidentiality is clearly indispensable; otherwise, the fourth
message of the protocol would falsify the conclusion of the theorem. That
assumption can be relaxed by Theorem 7.3.11, producing a guarantee that
is applicable by Tgs, since Kas and Tgs can inspect each other’s functioning
(KIV Confidentiality Tgs bis, omitted here). These guarantees point out
that Tgs’s minimal trust includes the recipients of the servkey to be uncom-
promised; otherwise, they would reveal the key.

Theorem 7.3.12 (KIV Confidentiality Tgs). If A and B are uncompro-
mised and evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |})

and is such that

Key authK 6∈ analz(spies evs) and ¬expiredSKTs evs

then evs is such that

104 7. Verifying a Deployed Protocol

Key servK 6∈ analz(spies evs).

There exists a guarantee of servkey confidentiality that A can apply upon
reception of specific instances of the second and fourth messages (Theo-
rem 7.3.13); hence that goal is available to A. It can be proved using existing
authenticity and confidentiality theorems. The first step is the application of
Theorem 7.3.3 to Theorem 7.3.11 to derive the authkey confidentiality. Then,
Theorem 7.3.5 gives that the servkey originated with Tgs, and Theorem 7.3.12
concludes.

Theorem 7.3.13 (KIV Confidentiality Serv A). If A and B are un-
compromised and evs is such that

Crypt(shrK A){|Key authK ,Agent Tgs,Number Ta, authTicket |}
∈ parts(spies evs) and

Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and
¬expiredAKTa evs and ¬expiredSKTs evs

then evs is such that

Key servK 6∈ analz(spies evs).

Investigating the servkey confidentiality from B’s viewpoint reveals a vi-
olation of the goal availability principle, which in turn provides the oppor-
tunity for novel insights (Theorem 7.3.14). The proof develops in a forward
style. First, it elaborates on the given history of servK , deriving the con-
fidentiality of authK by Theorems 7.3.3 and 7.3.11. Then, Theorem 7.3.1
states that authK is a session key (it does not belong to the range of shrK),
which is necessary to apply Theorem 7.3.5 and derive the origin of servK .
Certainly B is not a Kerberos Server, so he formally differs from Tgs; other-
wise, Theorems 7.3.4 and 7.3.1 would derive that servK is an authkey while
Theorem 7.3.2 states that it is not. At this stage, Theorem 7.3.6 introduces
another possible history of servK but the unicity argument for Tgs unifies
the two histories. An appeal to Theorem 7.3.12 concludes.

Theorem 7.3.14 (KIV Confidentiality B). If A and B are uncompro-
mised, B is not Tgs and evs is such that

Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|}
∈ parts(spies evs) and

Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and

Crypt(shrK A){|Key authK ,Agent Tgs,Number Ta, authTicket |}
∈ parts(spies evs) and
¬expiredAKTa evs and ¬expiredSKTs evs

then evs is such that

7.3 Verifying Kerberos IV 105

Key servK 6∈ analz(spies evs).

A closer look at the proof just described shows that, after Theorems 7.3.3,
7.3.11 and 7.3.5 are applied, the fact that servTicket = {|A,B, servK ,Ts|}Kb

could be derived by Theorem 7.3.2. Since parts is closed under message de-
composition, the first assumption about trace evs is technically unnecessary.
However, the present formulation highlights what B can or cannot verify.

In the real world, B can only witness the reception of the servticket, thus
verifying the first and fifth assumptions about evs. He is certainly not able
to verify the second, third and fourth because they pertain to the authen-
tication and authorisation phases, which he does not participate in. With
goal availability in mind, we wonder: are these assumptions necessary? They
signify that the authkey that encrypts the servkey whose confidentiality is
being studied has not expired. This is indispensable for the application of
Theorems 7.3.3 and 7.3.11 and enforces the authkey confidentiality, which is
itself indispensable for deriving the servkey confidentiality due to the form of
the fourth message. The conclusion is that the protocol fails to make servkey
confidentiality available to B in our realistic model. In consequence, Kerberos
IV can be attacked as follows.

Attacking the protocol. Because of the assumptions that B cannot verify,
Theorem 7.3.14 cannot be applied by B. The theorem reveals that, upon
reception of the servticket, B must assume that the preceding phases have
not compromised the authkey and consequently the servkey. But this clearly
does not belong to his minimal trust. Therefore, the protocol can be attacked
as follows.

1. The authkey belonging to A expires and the Spy gets hold of it, while A
is killed and her owner logged out from the workstation.

2. The Spy extracts all servkeys associated with that authkey from messages
she has previously intercepted. This is an attack on servkey confidential-
ity.

3. The Spy exploits each servkey not yet expired to spoof the corresponding
instance of the fifth message (she only needs to update the timestamp of
the authenticator) for some network service B.

4. The Spy terminates the service phase with B and gets access to its re-
sources. This is an attack on authentication of A with B.

As often remarked above, an attack is subjected to a threat model. Our
attacks succeed because the Spy can get hold of expired session keys (via
the oops events). Clearly, an attack is as realistic as the underlying threat
model. Session keys are often discarded in the real world when they expire,
but remain in memory regions that are rarely overwritten. In consequence,
our attacks become realistic. If a spoofed servkey has not yet expired, the
Spy can obtain access for its remaining lifetime to the corresponding service,
which in fact was granted to the initiator. The service believes to be com-
municating with the initiator, but the initiator does not exist anymore. Also,

106 7. Verifying a Deployed Protocol

the initiator’s owner is no longer connected and hence cannot register any
irregularities.

Fixing the protocol. The attacks succeed because the servkeys may re-
main valid even after the authkey with which they are associated expires.
Preventing this is a fix. It is sufficient to constrain Tgs’s operation with a
suitable temporal check so that it does not issue servkeys that would expire
after the authkey associated with them. Our formal model can easily reflect
the change by adding the temporal check

(CT evs) + servKlife ≤ Ta + authKlife (7.1)

to the preconditions of rule KIV4. Because Ta is the timestamp that marks
the issue of the authkey, the check exactly prescribes that the expiry time of
the servkey at the latest equals that of the authkey.

In the model for the updated protocol, Theorem 7.3.14 no longer needs
the second, third and fourth assumptions, and so becomes applicable by B
(KIVu Confidentiality B, omitted here). Therefore, the strengthened pro-
tocol makes servkey confidentiality available to B. Although shorter than
the old proof, the new one requires some arithmetic to handle the temporal
check. Moreover, B must be explicitly assumed not to be Tgs; otherwise, the
servticket {|A,B, servK ,Ts|}Kb could be misinterpreted as an authticket. The-
orem 7.3.6, updated to enforce also condition 7.1, derives a history of servK .
From ¬expiredSKTs evs and condition 7.1, we derive ¬expiredAKTa evs.
Theorems 7.3.11 and then 7.3.12 conclude the proof. Observe that the unicity
argument is not required because the reasoning only develops along a single
history of servK .

7.3.6 Authentication

Authentication is a major goal of Kerberos IV, especially between the ini-
tiator and the network service. We pragmatically analyse what forms of this
goal are achieved throughout the three phases of the protocol.

Authentication phase. Although the first phase is explicitly meant for
authentication, the first message does not authenticate the initiator to Kas
because it is a cleartext. The Spy might overload the Server with fake requests
even if she were an outsider. The same can be observed of BAN Kerberos
(§6.3), but these protocols are not meant to resist denial-of-service attacks.
The authenticity Theorem 7.3.3 also authenticates Kas to the initiator A,
providing her with an available guarantee of weak agreement with the first
Kerberos Server.

Authorisation phase. The authenticator {|A,T2 |}authK of the third mes-
sage aims at authenticating A with Tgs. However, Tgs’s merely receiving the
authenticator does not enforce the goal: the Server must also receive the cor-
responding authticket {|A,Tgs, authK ,Ta|}Ktgs to learn authK and be able to

7.3 Verifying Kerberos IV 107

decipher the authenticator. If authK is confidential in this scenario, then A
sent those certificates in an instance of the third message (Theorem 7.3.15).
Relaxing the last assumption by the confidentiality Theorem 7.3.11 results
in a guarantee applicable by Tgs. Observe that the regularity lemma guaran-
tees the integrity of the authticket because Tgs is uncompromised, while the
confidentiality of authK establishes integrity of the authenticator.

Theorem 7.3.15 (KIV Tgs authenticates A). If A is uncompromised
and evs is such that

Crypt authK{|AgentA,Number T2 |} ∈ parts(spies evs) and
Crypt(shrK Tgs){|Agent A,AgentTgs,Key authK ,Number Ta|}
∈ parts(spies evs) and

Key authK 6∈ analz(spies evs)

then, for some B, evs contains

Says A Tgs {|Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,Number Ta|},
Crypt authK{|Agent A,Number T2 |},AgentB|}.

The theorem formalises weak agreement of A with Tgs but does not express
that A is the true creator of the authenticator, which would give evidence
to Tgs that A knows authK and was alive at time T2 . Later (§8.4), we will
prove formally that this stronger goal is met.

The proof of the last theorem relies on the integrity of the two certificates
it mentions, which is guaranteed by the confidentiality of the encrypting keys.
It requires substantial simplification to deal with the long inductive formula.
One non-trivial subgoal arises from rule KIV3, as it introduces an event of
the same form as that asserted by the theorem. If the two events contain
different authkeys, the inductive formula terminates the proof; otherwise, an
appeal to the unicity Theorem 7.3.7 is required. Another significant subgoal
arises from rule KIV5 because the form of the authenticator in the inductive
formula matches that of the authenticator that this rule prescribes A to send
to B. However, this implies that the authkey authK is being used in place of
a servkey in the fifth message, which the protocol forbids. Precisely, we can
track the origin of authK back to Kas by a lemma stating that A only invokes
Tgs after Kas operated (KIV K3 imp K2, omitted here). Also, authK is
tracked back to Tgs by Theorem 7.3.5. Finally, we apply Theorems 7.3.1
and 7.3.2 to derive the contradiction that authK both is and is not an authkey.

The authenticity Theorem 7.3.5 appears to be a relevant guarantee of
what may seem weak agreement of Tgs with A. In studying whether that
goal is available to A, we observe that the confidentiality assumption on
the authkey can be relaxed by the corresponding argument (namely Theo-
rem 7.3.11 refined by Theorem 7.3.3). However, the conclusion must quantify
A existentially — hence the goal fails — because the premises do not bind her
identity. Opening up the servticket would technically help because it would

108 7. Verifying a Deployed Protocol

provide the necessary instance of A, although we would miss goal availability
since A cannot inspect that certificate in practice. However, before concluding
that the protocol fails to make the goal available to A, we must pragmatically
verify if there are other ways to bind A using assumptions that A can check.
One way is the reception of the second message, which Kas sends. Therefore,
we can refine (variant KIV servK authentic ter of) Theorem 7.3.5 by The-
orem 7.3.3 and obtain a theorem confirming that weak agreement of Tgs with
A is made available to A (Theorem 7.3.16).

Theorem 7.3.16 (KIV A authenticates Tgs). If A is uncompromised
and evs is such that

Crypt(shrK A){|Key authK ,Agent Tgs,Number Ta, authTicket |}
∈ parts(spies evs) and

Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and

Key authK 6∈ analz(spies evs)

then evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |}).

Service phase. The same method proves weak agreement of A with B (The-
orem 7.3.17) via a lemma containing the full event whereby Tgs sends off the
servticket (KIV Says K5, omitted here). The theorem relies on certificates
of the same form as those of Theorem 7.3.15. However, assuming B not to
be Tgs establishes that they contain a servticket. As expected, B must be
assumed to be uncompromised in order for the servticket to be integral. Later
(§8.4), the theorem will be strengthened to state formally that A knows servK
and was alive at time T3 .

Theorem 7.3.17 (KIV B authenticates A). If A and B are uncompro-
mised, B is not Tgs and evs is such that

Crypt servK{|AgentA,Number T3 |} ∈ parts(spies evs) and
Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|}
∈ parts(spies evs) and

Key servK 6∈ analz(spies evs)

then evs contains

Says A B {|Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|},
Crypt servK{|AgentA,Number T3 |}|}.

Refining the assumption of servkey confidentiality of this theorem by The-
orem 7.3.14 fails to make it applicable by B (KIV B authenticates A r,
omitted here). By contrast, refining it by the corresponding theorem for the
updated protocol would leave only assumptions that B can check within

7.3 Verifying Kerberos IV 109

his minimal trust (KIVu B authenticates A r, omitted here). In conclusion,
only the updated protocol makes the goal of weak agreement of A with B
available to B. The original protocol in fact suffers the authentication attack
described in the previous section.

Proving weak agreement of B with A (Theorem 7.3.18) is slightly more
complicated because the last message of the protocol fails to state B’s iden-
tity. Fortunately, this lack of explicitness can be overcome by additional
checks on A’s side. The theorem does not state formally that B knows servK
or when B was alive. These facts will be proved later (§8.4).

Theorem 7.3.18 (KIV A authenticates B). If A and B are uncompro-
mised and evs is such that

Crypt servK (Number T3) ∈ parts(spies evs) and
Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and

Crypt(shrK A){|Key authK ,AgentTgs,Number Ta, authTicket |}
∈ parts(spies evs)

Key authK 6∈ analz(spies evs) and Key servK 6∈ analz(spies evs)

then evs contains

Says B A (Crypt servK (Number T3)).

To understand this guarantee, let us recall that the last message of the proto-
col is a certificate sealed with a servkey. That key must be confidential for the
certificate not to be a spoof. Upon reception of the certificate, A can derive
that the servkey is meant for B by recalling the association established by
an instance of the fourth message. This must be sealed with a confidential
authkey meant for A in order for the association to be reliable, namely not
invented by the Spy.

If we relax the confidentiality assumptions on both keys by the corre-
sponding arguments seen above from A’s viewpoint, we find out that the
theorem only rests on assumptions that A can verify within her minimal
trust (KIV A authenticates B r, omitted here). This lets us conclude that
even the original protocol makes weak agreement of B with A available to A.

7.3.7 Key Distribution

The current potential of the Inductive Method is inadequate to reason about
key distribution (§4.7), as observed during the analysis of BAN Kerberos
(§6.5.7). In the next chapter, we will introduce the necessary extensions to
verify this goal (§8.4).

8. Modelling Agents’ Knowledge of Messages

Knowledge of messages for agents other than the Spy is defined
via possession of the messages. Two formalisations in the Inductive
Method are given and compared. They serve to treat a strong form of
authentication (non-injective agreement) and key distribution.

Reasoning formally about security protocols invites confusion between belief
and knowledge. Abstracting from the context may help clarify the difference.
If Alice knows something, then she has sufficient evidence that it is true. If she
believes something, then she does not necessarily have evidence about it. The
BAN logic [58] only captures the notion of belief, though this is often misin-
terpreted as knowledge. The predicate P believes φ signifies that “P would be
entitled to believe X” and that “P may act as though X is true” [58, p. 236].
Subsequent research extends the logic with a proper concept of knowledge:
Bleeker and Meertens [52] introduce the predicate P rightly believes φ, which
holds when P believes φ and φ in fact holds.

As demonstrated in the previous chapters, the Inductive Method already
provides a meta-formalisation of agents’ beliefs and knowledge by means of
theorems. Those stated from an agent’s viewpoint express the agent’s knowl-
edge if the agent can verify all their assumptions. Conversely, if the agent
cannot obtain evidence of the truth values of some assumptions, then the
theorems only express the agent’s beliefs. Strictly speaking, even when some
assumptions belong to the minimal trust (Chapter 5), the beliefs cannot be-
come knowledge.

The present chapter provides a formal definition of the agents’ knowledge
of messages and message components, rather than knowledge that certain
events occurred. This is crucial to verify the main goal of most of the protocols
already formalised: key distribution. Each of the peers of a session key should
receive guarantees that the other peer knows the same key. Moreover, the
definition prepares the Inductive Method for analysing new hierarchies of
protocols. For example, non-repudiation protocols [170, 171] aim at non-
repudiation of reception, which requires proving agents’ knowledge of specific
components upon their reception (Chapter 13). E-commerce protocols [37]
will not authorise delivery of goods until the merchant obtains assurances
that his bank knows the components that correspond to the exact payment.

112 8. Modelling Agents’ Knowledge of Messages

Protocols for group key agreement aim at distributing a key to all agents of
the group, providing each agent with evidence that the goal is met [18, 136].

We express knowledge of a component via possession of the compo-
nent [24]. This notion can be formalised via the ability to actively use the
component, which is in turn verifiable by inspecting the history of the net-
work (§8.1). Alternatively, reception of the component also expresses its pos-
session but requires introducing the corresponding event (§8.2). This also
improves the readability of the analyses. The outcomes of both approaches
are presented in detail on BAN Kerberos (§8.3) and on Kerberos IV (§8.4),
producing stronger guarantees of authentication and novel guarantees of key
distribution. The chapter continues with a comparison of the two approaches
(§8.5), and finally discusses the outcomes of using timestamps or nonces on
the same protocol design (§8.6), an issue that requires reasoning on agents’
knowledge. Theorems about various protocol versions and various protocol
models are discussed; hence, adherence to our theorem naming conventions
(§1.3.2) is particularly useful.

8.1 Agents’ Knowledge via Trace Inspection

The agent who creates a message certainly knows all components of the mes-
sage, including the cryptographic key that possibly seals the message. Un-
fortunately, a Says event is inadequate to express creation (as repeatedly
observed above, in §§4.6, 6.5.6, and 7.3.6) because it may occur when an
agent is merely forwarding an unintelligible message.

However, if we require that a message X never appeared, even within
a larger message, before the event Says A B X occurs, then A is the true
creator of X. This can be established by inspecting the history that precedes
the event. Since each history is recorded by a trace, enforcing the property
simply requires a trace inspection. We declare the predicate

Issues : [agent, agent,msg, event list]

so that A Issues B with X on evs holds when A creates message X for B in
a trace evs. Events may occur more than once and recent events are added
at the head of traces. Therefore, detecting the first occurrence through time
of an event ev in a trace evs requires scanning evs in reverse, namely from
tail to head. Traces are lists, and the theory file List.thy of the Isabelle
distribution [33, 34] provides numerous functions for reasoning about lists.
The unary rev reverses a list, while the binary takeWhile takes a predicate
and a list, scans the list and returns all elements of the list until these verify
the predicate. Other known functions are useful to define Issues as

A Issues B with X on evs ,

∃Y. Says A B Y ∈ set evs and X ∈ parts{Y } and

X /∈ parts(spies (takeWhile(λx. x 6= Says A B Y)(rev evs)))

8.1 Agents’ Knowledge via Trace Inspection 113

It can be seen that the predicate requires that A send X, possibly inside
a larger message, and that X never appear in the traffic preceding such an
event. Hence, the predicate can be used not only to convey agents’ knowledge
but also to formalise agent authentication.

8.1.1 Basic Lemmas

A few technical lemmas are necessary to reason about reversed lists. All of
them are provable by induction on the relevant trace. They do not depend
on the specific protocol under analysis as they are merely trace properties.
For example, those from theory file KerberosIV.thy (Figure 3.1) are quoted
here, but evs is a generic trace, not necessarily of the protocol model.

The traffic in a trace whose oldest element is a Says event amounts to
the traffic on the subtrace without the event plus the message introduced by
that event (Lemma 8.1.1). Recall that @ is the Isabelle symbol for the list
concatenation operator.

Lemma 8.1.1 (KIV spies Says rev).
Trace evs is such that spies (evs @ [Says A B X]) = {X} ∪ (spies evs).

Together with an analogous law concerning the Notes event (omitted
here), Lemma 8.1.1 serves to establish an obvious result formally: the traffic
on a reversed trace is the same as that on the original trace (Lemma 8.1.2).

Lemma 8.1.2 (KIV spies evs rev).
Trace evs is such that spies evs = spies (rev evs).

Another technically important result states that the traffic on a subtrace
obtained via the takeWhile function is a subset of the traffic on the whole
trace (Lemma 8.1.3).

Lemma 8.1.3 (KIV spies takeWhile).
Trace evs is such that spies (takeWhile P evs) ⊆ (spies evs).

The monotonicity law for parts can be resolved with Lemma 8.1.3, ob-
taining a result (Lemma 8.1.4) that will be very useful below.

Lemma 8.1.4 (KIV parts spies takeWhile mono).
Trace evs is such that parts(spies (takeWhile P evs)) ⊆ parts((spies evs)).

8.1.2 Proving Knowledge

A general method can be devised to prove significant guarantees in terms of
the Issues predicate.

Let us suppose that a message X is a component of a larger message Y ,
and that the event Says A B Y occurs in a trace evs. If A is the true creator of
X, then (and only then) can we prove that A Issues B with X on evs holds.
Some assumptions are necessary to assure that the Spy cannot forge X before

114 8. Modelling Agents’ Knowledge of Messages

A actually creates it: if X is a concatenated message, then we must assume
that the Spy cannot analyse its components from the traffic or synthesise
them; if X is a ciphertext, then we must assume confidentiality of the key
that seals it. Also, A must be assumed not to be the Spy, so she acts legally
according to the protocol. Further assumptions may be required on A and B
(§§8.3.1 and 8.4.1) depending on the protocol. The proof develops through
the following method.

– Simplify the main subgoal by the definition of Issues.
– Isolate the first two conjuncts of the definition of Issues by proceeding in

a backward style (resolving first by the introduction rules for existential
quantification, and then by conjunction).

– Prove the first conjunct, Says A B Y , by assumption, and the second con-
junct, X ∈ parts{Y }, by symbolic evaluation of the parts operator.

– Apply structural induction over the protocol model to verify that all steps
of the protocol definition preserve the following property: the occurrence
of the event Says A B Y in a trace implies that Y never appears in the trace
before that event.

– Simplify all subgoals.
– Prove the subgoal corresponding to the protocol step where the event

Says A B Y takes place by applying Lemmas 8.1.2 and 8.1.3, a few other
trivial ones, and a lemma introducing the event Says A B Y on the available
assumptions (§§8.3.1 and 8.4.1).

Although such a theorem has limited importance in itself, since it merely
says that an agent knows the components of the messages he sends, it is par-
ticularly useful to refine other theorems that enforce the event Says A B Y . For
example, using this method we have investigated the goals of non-injective
agreement and key distribution on all protocols analysed so far, as demon-
strated on two Kerberos versions in the rest of this chapter.

8.2 Agents’ Knowledge via Message Reception

The extensions to the Inductive Method mentioned in this section were re-
leased with the 1999 distribution of Isabelle [158]. They can be found in file
Event.thy (Figure 3.1).

A primitive Gets can be introduced to model message reception [22]. The
Isabelle datatype of events (§3.7) must be extended as

datatype event , Says agent agent msg

Notes agent msg

Gets agent msg

In the real world, a message can be received only if it was previously
sent. This reception invariant can be easily enforced by the protocol model
(§8.2.2).

8.2 Agents’ Knowledge via Message Reception 115

Technically speaking, the Notes event could be replaced by the Gets event
imagining that, when an agent notes down a message, it is as if the agent
received it from the network. However, this would compromise the reception
invariant. Keeping the two events separate allows reasoning that turns out
to be more readable, more faithful to reality and, ultimately, simpler. For
example, thanks to the reception invariant, the messages that are received
do not need to enrich the set of components used in a trace. The definition
of used (§3.10) must be enriched with the following rule.

3. All messages received in a trace do not directly extend those that are
used on that trace.

used((Gets A X) # evs) , used evs

8.2.1 From Spy’s Knowledge to Agents’ Knowledge

The major outcome of introducing message reception is a realistic formalisa-
tion of agents’ knowledge. The rudimentary version available initially within
the Inductive Method [132] was soon specialised to express knowledge of a
single agent, the Spy, by means of the function spies (§3.9). The previous
chapters have demonstrated that this function allows reasoning about con-
fidentiality but not about key distribution. We generalise spies to a binary
function

knows : [agent, event list] −→ msg set

It is meant to capture any agent’s knowledge: the first parameter represents
the agent whose knowledge is being defined. The entire range of the function
initState (§3.9) now becomes relevant to the rest of the treatment. The defini-
tion of knows generalises that of spies in the base case and the two inductive
steps corresponding to the existing events. A third inductive step becomes
necessary to account for the Gets event.

0. An agent knows his initial state.

knows A [] , initState A

1. An agent knows what he sends to anyone in a trace; in particular, the
Spy also knows all messages ever sent on it.

knows A ((Says A′ B X) # evs) ,{
{X} ∪ knows A evs if A = A′ or A = Spy

knows A evs otherwise

2. An agent knows what he notes in a trace; the Spy also knows the com-
promised agents’ notes.

116 8. Modelling Agents’ Knowledge of Messages

knows A ((Notes A′ X) # evs) ,
{X} ∪ knows A evs if A = A′ or

(A = Spy and A′ ∈ bad)

knows A evs otherwise

3. An agent, except the Spy, knows what he receives in a trace. The Spy’s
knowledge must not be extended with any of the received messages since
the Spy already knows them by case 1 and by the reception invariant.

knows A ((Gets A′ X) # evs) ,{
{X} ∪ knows A evs if A = A′ and A is not the Spy

knows A evs otherwise

The initial hints to agents’ knowledge [132, §4.5] suggested that an agent
A can see a message X when X has been sent by someone to A. However,
sending X off to A does not assure that X is delivered to A. The introduction
of the reception event allows a faithful treatment of the matter through the
last step of the definition of knows.

Recall that the function analz is applied to a set of messages and recur-
sively extracts all components of concatenated messages and bodies of mes-
sages encrypted under keys that are known. If, in the real world, an agent A
knows a message X, the protocol model contains a trace evs such that either
X ∈ (knows A evs) if A did not need any decryption to get hold of X, or
X ∈ analz(knows A evs) if A had to retrieve X from within a larger message
of the set knows A evs. Therefore, also agents other than the Spy may now
need to apply the function analz in some circumstances.

8.2.2 Updating the Existing Models

Let prot be a formal protocol model. The reception invariant (that a message
can be received only if it was sent) can be enforced by adding an inductive
rule to the definition of the protocol. The rule, which is called Reception (Fig-
ure 8.1), allows the extension of a trace of prot containing an event Says A B X
with the event Gets B X.

Reception :
[[evsR ∈ prot; Says A B X ∈ set evsR]] =⇒ Gets B X # evsR ∈ prot

Fig. 8.1. Rule template for message reception

Observe that, since rules are never forced to fire on any trace, no
Gets event can be forced to take place. Therefore, no guarantee can be es-
tablished that a message that was sent will be ever received by the intended

8.2 Agents’ Knowledge via Message Reception 117

recipient, as is realistic in a setting where the Spy can prevent message deliv-
ery. Furthermore, each rule can fire more than once so that the same message
can be received more than once. Rules can fire in the wrong order so that
the order in which messages are sent is not necessarily preserved upon their
reception. Observe also that agents discard the sender label upon reception
because it is not reliable on an insecure network.

Fake :
[[evsF ∈ bankerb_gets; X ∈ synth (analz (knows Spy evsF))]]
=⇒ Says Spy B X # evsF ∈ bankerb_gets

Reception :
[[evsR ∈ bankerb_gets; Says A B X ∈ set evsR]]
=⇒ Gets B X # evsR ∈ bankerb_gets

BK2 :
[[evs2 ∈ bankerb_gets; Key K 6∈ used evs2;
Gets Server {|Agent A, Agent B|} ∈ set evs2]]

=⇒ Says Server A (Crypt (shrK A) {|Number (CT evs2), Agent B, Key K,
Crypt (shrK B) {|Number (CT evs2), Agent A, Key K|}|})

evs2 ∈ bankerb_gets

BK3 :
[[evs3 ∈ bankerb_gets;
Says A Server {|Agent A, Agent B|} ∈ set evs3;
Gets A (Crypt (shrK A) {|Number Ts, Agent B, Key K, Ticket|})
∈ set evs3;

¬ expiredS Ts evs3]]
=⇒ Says A B {|Ticket, Crypt K {|Agent A, Number (CT evs3)|}|}

evs3 ∈ bankerb_gets

Fig. 8.2. Inductive model, updated with message reception, of BAN Kerberos:
fragment

The protocol model needs further updates. If the event Says P Q X ap-
pears in the premises of a rule and P does not appear in the conclusions,
then the event can be replaced by Gets QX. In the old model, Q acted when
some other (undefined) agent had sent him X. However, no agent but the
Spy can monitor events performed by other agents, so the condition was not
directly verifiable by Q until X was received. Thus, the new model expresses
Q’s behaviour more accurately. Figure 8.2 shows a fragment of the updated
model for the BAN Kerberos, called bankerb gets. It is derived from that in
Figure 6.2 (§6.4) and can be obtained with file Kerberos BAN Gets.thy (Fig-
ure 3.1). It can be seen that the Fake rule features knows Spy rather than
spies — all occurrences of spies should be updated similarly. Observe also
the Gets preconditions in rules BK2 and BK3.

118 8. Modelling Agents’ Knowledge of Messages

8.2.3 Basic Lemmas

For example, let us consider a generic trace evs of the protocol model
bankerb gets just seen, though the following treatment holds for all protocols
where the Gets event is used as suggested. The reception invariant can be
easily proved by induction (Lemma 8.2.1).

Lemma 8.2.1 (BKg Gets imp Says).
If evs contains Gets B X, then, for some A, evs also contains Says A B X.

Applying this lemma and a basic one stating that the Spy knows the
messages that have been sent, we can prove that she also knows all messages
that have been received (Lemma 8.2.2).

Lemma 8.2.2 (BKg Gets imp knows Spy).
If evs contains Gets B X, then evs is such that X ∈ (knows Spy evs).

Applying this lemma when B is the Spy, we derive that the Spy knows
the messages she receives. The last case of the definition of knows allows this
result to be generalised: any agent knows what he receives (Lemma 8.2.3).

Lemma 8.2.3 (BKg Gets imp knows).
If evs contains Gets B X, then evs is such that X ∈ (knows B evs).

Resolving Lemma 8.2.2 with the lemma H ⊆ parts H, we obtain that
messages that are received by anyone appear in the traffic (Lemma 8.2.4).

Lemma 8.2.4 (BKg Gets imp knows Spy parts).
If evs contains Gets B X, then evs is such that X ∈ parts(knows Spy evs).

Resolving Lemma 8.2.3 with the lemma H ⊆ analzH, we obtain that mes-
sages that an agent receives really are accessible to that agent (Lemma 8.2.5).
This is important because analz is idempotent: analz(analzH) = analzH. So,
if a message is accessible, it can be accessed with finite efforts.

Lemma 8.2.5 (BKg Gets imp knows analz).
If evs contains Gets B X, then evs is such that X ∈ analz(knows B evs).

8.2.4 Updating the Existing Theorems

Lemma 8.2.4 introduces significant modifications to some of the theorems
already proved so far. In consequence, some theorems become available (in
the sense of goal availability) to the agents. For example, the unicity Theo-
rem 6.5.4 for BAN Kerberos can be made available to agents who are uncom-
promised (Theorem 8.2.1). Here, evs still is a generic trace of bankerb gets.
The proof rests on a double application of Lemma 8.2.4; a double application
of the authenticity Theorem 6.5.2 then introduces the necessary assumptions
to apply the unicity Theorem 6.5.4.

8.3 Revisiting the Guarantees on BAN Kerberos 119

Theorem 8.2.1 (BKg unique session keys Gets). If A is uncompromi-
sed and evs contains

Gets A (Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |}) and
Gets A (Crypt(shrK A){|Number Tk ′,AgentB′,Key Kab,Ticket ′|})

then

Tk = Tk ′ and B = B′ and Ticket = Ticket ′.

Therefore, should an agent who is uncompromised receive the same session
key within two different messages, she could suspect that something has gone
wrong (something that is outside our model). Arguably, the Unique predicate
cannot be proved to hold on any reception event, for any message can be
received more than once (§8.2.2).

Other theorems become more readable and faithful to reality thanks to
the reception event. For example, authentication of A to B for Kerberos IV
can be established upon B’s reception of a suitable message, as we can see
below (Theorem 8.4.7). It certainly is clearer than the analogous theorem
without the reception event, which was given in the previous chapter (Theo-
rem 7.3.17).

8.2.5 Proving Knowledge

The crucial fact about agents’ knowledge is Lemma 8.2.5 : any agent knows
what he receives (and its components). Hence, when designing guarantees for
an agent A, we can inform her of B’s knowledge of all components of X by
proving that an event Gets B X took place. However, proving that the event
occurred depends on the protocol under analysis. The rest of this chapter
shows how to prove the goals of authentication and key distribution for BAN
Kerberos (§8.3.2) and for Kerberos IV (§8.4.2).

8.3 Revisiting the Guarantees on BAN Kerberos

We have tested both approaches to agents’ knowledge on all existing protocol
analyses. This section presents the outcomes on the verification of BAN Ker-
beros. As agents’ knowledge is modelled, the most significant benefits concern
key distribution and, indirectly, a stronger form of authentication than that
discussed in Chapter 6: non-injective agreement on the session key. Minor
outcomes have already been mentioned (§8.2.4).

In this section, for the sake of readability, when the assumption that a
session key is confidential is necessary, it is left unrelaxed (though it can be
relaxed by the appropriate confidentiality argument seen above).

120 8. Modelling Agents’ Knowledge of Messages

8.3.1 Using Trace Inspection

Here, evs is a generic trace of bankerberos. The general method (§8.1.2) can
be applied to prove that if an uncompromised agent sends an instance of the
third message of BAN Kerberos, then that agent indeed created the message
(Theorem 8.3.1).

Theorem 8.3.1 (BK A Issues B). If A and B are uncompromised and
evs contains

Says A B {|Ticket ,CryptKab{|AgentA,Number Ta|}|}
and is such that

Key Kab /∈ analz(spies evs)

then evs is such that

A Issues B with (CryptKab{|AgentA,Number Ta|}) on evs.

[[A 6∈ bad; B 6∈ bad; evs3 ∈ bankerb_gets;
Says S A (Crypt (shrK A) {|Number Tk, Agent B, Key Kab, Ticket|})
∈ set evs3;

Says A Server {|Agent A, Agent B|} ∈ set evs3; ¬ expiredK Tk evs3;
Key Kab 6∈ analz (spies evs3);
Says A B {|Ticket, Crypt Kab {|Agent A, Number (CT evs3)|}|} 6∈ set evs3;
Crypt Kab {|Agent A, Number (CT evs3)|}
∈ parts

(spies
(takeWhile

(λz. z 6= Says A B {|Ticket,
Crypt Kab {|Agent A, Number (CT evs3)|}|})

(rev evs3)))]]
=⇒ False

Fig. 8.3. Proving an Issues property for BAN Kerberos

As anticipated by the general method, the most difficult subgoal to prove
arises from the case formalising the third step of the protocol, which is quoted
in Figure 8.3. It can be seen that the last assumption of the subgoal can be
resolved with Lemma 8.1.4, producing

CryptKab{|Agent A,Number(CT evs3)|} ∈ parts(spies (revevs3))

which, resolved with Lemma 8.1.2, means that the authenticator appears in
the traffic. At this stage, the proof would terminate if we could apply the
authentication Theorem 6.5.9. Precisely, its variant BK B authenticates A,
where the confidentiality assumption on the session key has not yet been
relaxed by Theorem 6.5.8, seems useful. But not all of its assumptions are
yet available, as it is missing the fact that the ticket in its intelligible form is
in the traffic, that is

8.3 Revisiting the Guarantees on BAN Kerberos 121

Crypt(shrK B){|Number Tk ,AgentA,Key Kab|} ∈ parts(spies evs3)

So, we try to derive this fact. From the fourth assumption of the subgoal, it
follows that evs3 is such that

Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |} ∈ parts(spies evs3)

By Theorem 6.5.2, the fourth assumption in the figure also holds when the
agent S is the Server. Then, Theorem 6.5.1 derives the form of the ticket.
Because the Server sent it, it is in the traffic, so the assumption that we were
missing has now been found to hold. Hence, the proof proceeds as anticipated
above and the last subgoal terminates as indicated.

The mentioned variant of the authentication Theorem 6.5.9 can be re-
solved with the first assumption of Theorem 8.3.1. This produces a guarantee
for B conveying A’s knowledge of Kab and non-injective agreement of A with
B on Kab (Theorem 8.3.2), because the Issues predicate hides and enriches
the corresponding Says event. It becomes available to B if we relax the con-
fidentiality assumption. The theorem assumes A to be uncompromised, so
she acts legally. This implies that she was alive at time Ta. As we point out
below, the theorems presented here also confirm the key distribution goal;
hence their names.

Theorem 8.3.2 (BK B authenticates&keydist to A). If A and B are
uncompromised and evs is such that

Crypt(shrK B){|Number Tk ,AgentA,Key Kab|} ∈ parts(spies evs) and
CryptKab{|AgentA,Number Ta|} ∈ parts(spies evs) and
Key Kab /∈ analz(spies evs)

then evs is such that

A Issues B with (CryptKab{|AgentA,Number Ta|}) on evs.

The same procedure relies on the authentication Theorem 6.5.10 to prove
an analogous guarantee for A (Theorem 8.3.3). Precisely, in this case we need
variant BK A authenticates B of Theorem 6.5.10, where the confidentiality
assumption on the session key has not yet been relaxed by Theorem 6.5.7. The
following theorem informs A that B knows Kab and establishes non-injective
agreement of B with A on Kab.

Theorem 8.3.3 (BK A authenticates&keydist to B). If A and B are
uncompromised and evs is such that

Crypt(shrK A){|Number Tk ,Agent B,Key Kab,Ticket |}
∈ parts(spies evs) and

CryptKab(Number Ta) ∈ parts(spies evs) and
Key Kab /∈ analz(spies evs)

then evs is such that

122 8. Modelling Agents’ Knowledge of Messages

B Issues A with (CryptKab(Number Ta)) on evs.

Unfortunately, the protocol only requires B to reply with an incremented
Ta, so A only understands that B was alive after Ta. In other words, Ta is
being used as a nonce. However, if B inserted the current time in place of
Ta, then A would be informed of the exact instant when B was alive, which
is a desirable outcome from the use of timestamps.

Let us summarise. Theorems 8.3.2 and 8.3.3 formally prove that BAN
Kerberos also achieves the goal of key distribution, which completes the pro-
tocol analysis presented above (Chapter 6). Their confidentiality assumptions
can be easily relaxed using the appropriate confidentiality argument, so we
can conclude that the protocol makes key distribution available to its peers
in our threat model featuring the temporal modelling of accidents. The same
conclusion holds for mutual non-injective agreement on the session key if we
consider these theorems, which express the necessary knowledge of the key,
along with the authentication Theorems 6.5.9 and 6.5.10. In the next section,
we shall study the same goals using message reception.

8.3.2 Using Message Reception

A similar reasoning can be conducted using the other approach to agents’
knowledge, which is based on message reception. Recall that our aim is to
prove that each of the peers received the session key on assumptions that
the other peer can verify (§8.2.5). For the sake of demonstration, we consider
the BAN Kerberos protocol and a generic trace evs of its formal model that
makes use of message reception, bankerb gets.

Let us suppose that an agent B who is uncompromised receives an in-
stance of the third message of the protocol that quotes an agent A who is not
the Spy. Assuming that this session key is confidential, it can be concluded
that the session key must be known to A and that it was A who sent that
message to B (Theorem 8.3.4).

Theorem 8.3.4 (BKg B authenticates&keydist to A). If A and B are
uncompromised and evs contains

Gets B {|Crypt(shrK B){|Number Tk ,Agent A,Key Kab|},
CryptKab{|Agent A,Number Ta|}|}

and is such that

Key Kab /∈ analz(knows Spy evs)

then evs contains

Says A B {|Crypt(shrK B){|Number Tk ,AgentA,Key Kab|},
CryptKab{|AgentA,Number Ta|}|}

and is such that

8.3 Revisiting the Guarantees on BAN Kerberos 123

Key Kab ∈ analz(knows A evs).

The proof is as follows. Take Theorem 6.5.9, which authenticates A with B,
precisely its mentioned variant where the key confidentiality assumption is
yet unrelaxed. It can be updated according to the guidelines given above
(§8.2.4), so that its two main assumptions become the single assumption
that a suitable Gets event occurred. Theorem 6.5.9 concludes that A sent the
right instance of the third message. Then, having that A is uncompromised,
she certainly is not the Spy, and in consequence she must have received
an instance of the second message containing Kab (BKg BK3 imp Gets,
omitted here). Therefore, she can extract the session key by Lemma 8.2.5,
because she knows her own shared key.

Not only does Theorem 8.3.4 establish key distribution to A but also non-
injective agreement of A with B on Kab. The confidentiality assumption on
the session key can be relaxed by Theorem 6.5.8, so that both goals become
available to B.

The same method can be followed to prove analogous guarantees for A
(Theorem 8.3.5).

Theorem 8.3.5 (BKg A authenticates&keydist to B). If A and B are
uncompromised and evs contains

Gets A (CryptKab(Number Ta)) and
Gets A (Crypt(shrK A){|Number Tk ,AgentB,Key Kab,Ticket |})

and is such that

Key Kab /∈ analz(knows Spy evs)

then evs contains

Says B A (CryptKab(Number Ta))

and is such that

Key Kab ∈ analz(knows B evs).

The proof is similar to the previous one. Take the variant of the authentica-
tion Theorem 6.5.10 where the confidentiality assumption yet is unrelaxed,
and update it according to the usual guidelines (§8.2.4). It enforces that B
sent the correct instance of the fourth message. We can further infer that
he received an instance of the third message because he is uncompromised
(BKg BK4 imp Gets, omitted here). Therefore, he can learn the session key
by an appeal to Lemma 8.2.5, because he knows his own shared key.

Not only does Theorem 8.3.5 establish key distribution to B but it also
establishes non-injective agreement of B with A on Kab. The confidentiality
assumption on the session key can be relaxed by Theorem 6.5.7, so that both
goals become available to A.

Theorems 8.3.4 and 8.3.5 confirm the findings of the previous section,
where a different modelling of agents’ knowledge was used: BAN Kerberos

124 8. Modelling Agents’ Knowledge of Messages

makes key distribution and mutual non-injective agreement on the session
key available to its peers in our threat model.

8.4 Revisiting the Guarantees on Kerberos IV

Both approaches to modelling agents’ knowledge scale up to proving non-
injective agreement and key distribution on Kerberos IV. The proofs are, as
expected, longer than those for BAN Kerberos because distinguishing be-
tween the two kinds of session keys and tickets often requires case analyses.
Also here, for the sake of readability, the key confidentiality assumptions are
left unrelaxed.

8.4.1 Using Trace Inspection

Here, evs is a generic trace of kerbIV, the protocol model that comes with the
file KerberosIV.thy (Figure 3.1). As previously mentioned, the authenticity
Theorem 7.3.3 establishes weak agreement of Kas with A. The general method
(§8.1.2) may be used to establish that, if Kas sends an instance of the second
message, then Kas is indeed issuing it, namely the message never appeared
before (KIV Kas Issues A, omitted here). Resolving the assumption of this
result by Theorem 7.3.3 provides A with evidence that Kas knows the authkey
mentioned in the message (KIV A authenticates&keydist to Kas, omitted
here). This establishes non-injective agreement of Kas with A on the authkey.
As we shall see, these theorems also confirm various forms of key distribution;
hence their names.

If A is an uncompromised agent sending an instance of the third mes-
sage, then we can prove that A is the creator of the authenticator that the
message contains (KIV A Issues Tgs, omitted here). Observe that, while
Kas certainly is not the Spy thanks to the injections created by the Isabelle
datatype of messages (§3.6), the generic agent A must be explicitly assumed
to be uncompromised in order for the result to hold. Combining this with
the authentication Theorem 7.3.15, we obtain a guarantee of non-injective
agreement of A with Tgs on the authkey (Theorem 8.4.1). Relaxing the con-
fidentiality assumption on the authkey by Theorem 7.3.11, the guarantee can
be applied by Tgs (within its minimal trust that A is uncompromised). The
theorem also informs Tgs that A was alive at time T2 .

Theorem 8.4.1 (KIV Tgs authenticates&keydist to A). If A is un-
compromised and evs is such that

Crypt authK{|AgentA,Number T2 |} ∈ parts(spies evs) and
Crypt(shrK Tgs){|Agent A,Agent Tgs,Key authK ,Number Ta|}
∈ parts(spies evs) and

Key authK /∈ analz(spies evs)

8.4 Revisiting the Guarantees on Kerberos IV 125

then evs is such that

A Issues Tgs with (Crypt authK{|AgentA,Number T2 |}) on evs.

Like Kas, also Tgs acts legally. So, we can prove that if Tgs sends an in-
stance of the fourth message, then the message is new (KIV Tgs Issues A,
omitted here). This result can be combined with Theorem 7.3.16, which ex-
pressed weak agreement of Tgs with A, arriving at a guarantee of non-injective
agreement of Tgs with A on the authkey and the servkey (Theorem 8.4.2).
The same guarantee also tells A that Tgs was alive at time Ts.

Theorem 8.4.2 (KIV A authenticates&keydist to Tgs). If A is un-
compromised and evs is such that

Crypt(shrK A){|Key authK ,AgentTgs,Number Ta, authTicket |}
∈ parts(spies evs) and

Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and

Key authK 6∈ analz(spies evs)

then evs is such that

Tgs Issues A with

(Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}) on evs.

We can also prove that an uncompromised agent who sends an instance
of the fifth message does create the authenticator included in the message
(KIV A Issues B, omitted here). Its assumptions can be relaxed by Theo-
rem 7.3.17, deriving a guarantee of non-injective agreement of A with B on
the servkey (Theorem 8.4.3), which also tells B that A was alive at time T3 .

Theorem 8.4.3 (KIV B authenticates&keydist to A). If A and B are
uncompromised, B is not Tgs and evs is such that

Crypt servK{|AgentA,Number T3 |} ∈ parts(spies evs) and
Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|}
∈ parts(spies evs) and

Key servK /∈ analz(spies evs)

then evs is such that

A Issues B with (Crypt servK{|AgentA,Number T3 |}) on evs.

Finally, if an uncompromised agent B sends an instance of the last mes-
sage sealed with a confidential servkey, then the message can be proved to
be new (KIV B Issues A, omitted here). This result can be used to refine
Theorem 7.3.18, thereby expressing non-injective agreement of B with A on
the servkey (Theorem 8.4.4). Also, B does not cheat because he is assumed to
be uncompromised. Therefore, as observed on BAN Kerberos, A learns that

126 8. Modelling Agents’ Knowledge of Messages

B was alive after T3 but would get more precise information if B replaced
T3 with a fresh timestamp. The protocol merely prescribes B to increment
T3 , an imprecise feature that we chose not to model (§7.2.4).

Theorem 8.4.4 (KIV A authenticates&keydist to B). If A and B are
uncompromised, B is not Tgs and evs is such that

Crypt servK (Number T3) ∈ parts(spies evs) and
Crypt authK{|Key servK ,Agent B,Number Ts, servTicket |}
∈ parts(spies evs) and

Crypt(shrK A){|Key authK ,Agent Tgs,Number Ta, authTicket |}
∈ parts(spies evs) and

Key authK /∈ analz(spies evs) and Key servK /∈ analz(spies evs)

then evs is such that

B Issues A with (Crypt servK (Number T3)) on evs.

The theorems presented here can be also interpreted to confirm key dis-
tribution. Theorems 8.4.3 and 8.4.4 signify that the protocol guarantees key
distribution of a servkey to its peers. Theorems 8.4.1 and 8.4.2 signify that
it also meets key distribution of an authkey to the protocol initiator and
to Tgs. Relaxing the confidentiality assumptions by the appropriate formal
arguments, we can conclude that these key distribution goals are available
to the mentioned agents. In the next section, we shall see how to study the
same goals by message reception.

8.4.2 Using Message Reception

Here, evs is a generic trace of the protocol model kerbIV gets, which comes
with the file KerberosIV Gets.thy (Figure 3.1). The entire hierarchy of theo-
rems presented below rests on a single philosophy: the authenticity (§7.3.3)
or authentication (§7.3.6) theorems updated by suitable reception events
(§8.2.4) provide guarantees of weak agreement. Using the definition of knows,
we prove that specific agents have knowledge of specific session keys. Combin-
ing these guarantees, we derive non-injective agreement on the session keys,
and also key distribution.

If an agent who is uncompromised receives the instance of the second
message that is sealed with her shared key, an appeal to Lemma 8.2.4
derives the necessary assumptions to apply Theorem 7.3.3. The resulting
theorem, stating that Kas sent the message received by that agent, estab-
lishes weak agreement of Kas with A. Since Kas knows all shared keys, it
can extract and learn the authkey contained in the message. The combi-
nation of these results (KIVg A authenticates&keydist to Kas, omitted
here) guarantees non-injective agreement of Kas with A on the authkey.
Formally, it also expresses key distribution of the authkey to Kas, a guar-
antee that is typically taken for granted — in fact, the obvious technical

8.4 Revisiting the Guarantees on Kerberos IV 127

lemma that Kas knows all agents’ shared keys had never been proved before
(KIVg shrK in knows Server, omitted here).

The updated authentication Theorem 7.3.15 states that, upon reception
by Tgs of an instance of the third message that includes a confidential au-
thkey, the agent mentioned by the authenticator sent the message. Let A be
such agent. If A is uncompromised, induction proves that A sends the third
message only upon reception of the second (KIVg K3 imp Gets, omitted
here), from which she can extract the authkey. Hence, Tgs can be assured that
A knows the authkey (Theorem 8.4.5). This theorem assures non-injective
agreement of A with Tgs on the authkey, and also assures key distribution of
the authkey to A.

Theorem 8.4.5 (KIVg Tgs authenticates&keydist to A). If A is un-
compromised and evs contains

Gets Tgs {|Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,Number Ta|},
Crypt authK{|AgentA,Number T2 |},Agent B|}

and is such that

Key authK /∈ analz(knows Spy evs)

then, for some B, evs contains

Says A Tgs {|Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,Number Ta|},
Crypt authK{|AgentA,Number T2 |},Agent B|}

and is such that

Key authK ∈ analz(knows A evs).

The existential form of the conclusion derives from application of Theo-
rem 7.3.15. The identity of the intended recipient of the third message cannot
be confirmed because the message is concatenated; hence, the Spy can alter
that identity while the message is in the network. Therefore, Tgs cannot have
the identity of A’s intended recipient confirmed.

The authentication Theorem 7.3.16 can now be proved assuming the
protocol initiator’s reception of the suitable messages. We already observed
(§7.3.6) that, if A is the initiator, then the guarantee conveys weak agreement
of Tgs with A because it states that Tgs sent the message to A. Because Tgs
only acts legally, it must have received the suitable instance of the third mes-
sage (KIVg K4 imp Gets, omitted here), learning the authkey from the au-
thticket by Lemma 8.2.5. Also, by definition of knows, Tgs knows the servkey
that it has associated with the authkey. Agent A can be therefore informed
that Tgs knows both session keys (Theorem 8.4.6). We have thus established
non-injective agreement of Tgs with A on the authkey and the servkey, and
also key distribution of both keys to Tgs.

Theorem 8.4.6 (KIVg A authenticates&keydist to Tgs). If A is un-
compromised and evs contains

128 8. Modelling Agents’ Knowledge of Messages

Gets A (Crypt(shrK A){|Key authK ,AgentTgs,Number Ta, authTicket |})
and

Gets A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |})
and is such that

Key authK /∈ analz(knows Spy evs)

then evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |})
and is such that

Key authK ∈ analz(knows Tgs evs) and
Key servK ∈ analz(knows Tgs evs).

Theorem 7.3.17, expressing weak agreement of A with B, can be updated
as usual to rely on an appropriate Gets event. The theorem concludes that
A sent the right instance of the fifth message. Continuing on this premise,
it follows that, if A is uncompromised, she must have received a suitable
instance of the fourth message (KIVg K5 imp Gets, discussed below), and
must have extracted the servkey as we will see. Therefore, we have developed
a guarantee of non-injective agreement of A with B on the servkey, and also
of key distribution of the servkey to A (Theorem 8.4.7).

Theorem 8.4.7 (KIVg B authenticates&keydist to A). If A and B
are uncompromised, B is not Tgs and evs contains

Gets B {|Crypt(shrK B){|AgentA,AgentB,Key servK ,Number Ts|},
Crypt servK{|AgentA,Number T3 |}|}

and is such that

Key servK /∈ analz(knows Spy evs)

then evs contains

Says A B {|Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|},
Crypt servK{|AgentA,Number T3 |}|}

and is such that

Key servK ∈ analz(knows A evs).

This theorem is slightly more complicated to prove than others of the same
form. Observe that the fifth message cannot bind the authkey because the
receiver B is not meant to see any such keys. In consequence, a lemma
like KIVg K5 imp Gets necessarily must quantify that key existentially. We
need to infer that the initiator A knows the very authkey of which the theo-
rem merely conveys existence. A quick inspection of rule KIV5 of the protocol
model (Figure 7.6) shows that A’s sending the fifth message also implies that
she sent the corresponding instance of the third (Lemma 8.4.1).

8.4 Revisiting the Guarantees on Kerberos IV 129

Lemma 8.4.1 (KIVg K5 imp Gets). If A is uncompromised and evs
contains

Says A B {|servTicket ,Crypt servK{|AgentA,Number T3 |}|}

then, for some authK , Ts, authK and T2 , evs contains

Gets A (Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |}) and
Says A Tgs {|authTicket ,Crypt authK{|AgentA,Number T2 |},Agent B|}.

The first event of the conclusion confirms that we only need to express A’s
knowledge of the existentially quantified authkey to terminate our reasoning,
because that would allow A to extract the servkey. The second event of the
conclusion can be shown by an appropriate lemma (KIVg K3 imp Gets,
omitted here) to imply that A received that very authkey within an instance
of the second message. Because this message is encrypted using A’s shared
key, she is able to extract the session key, appealing to Lemma 8.2.5.

Finally, the authentication Theorem 7.3.18 can be updated in terms of re-
ception of the messages it mentions. Following the usual method, it can be for-
mally proved that an agent who is uncompromised sends only the last message
of the protocol upon reception of the last but one (KIVg K6 imp Gets, omit-
ted here). He can therefore extract the servkey from the received servticket.
This method informs the initiator A that the servkey she has received is also
known to the responder B (Theorem 8.4.8). This guarantees non-injective
agreement of B with A on the servkey, and also key distribution of the servkey
to B.

Theorem 8.4.8 (KIVg A authenticates&keydist to B). If A and B
are uncompromised and evs contains

Gets A {|Crypt authK{|Key servK ,AgentB,Number Ts, servTicket |},
Crypt servK (Number T3)|} and

Gets A (Crypt(shrK A){|Key authK ,AgentTgs,Number Ta, authTicket |})

and is such that

Key authK /∈ analz(knows Spy evs) and Key servK /∈ analz(knows Spy evs)

then evs contains

Says B A (Crypt servK (Number T3)))

and is such that

Key servK ∈ analz(knows B evs).

130 8. Modelling Agents’ Knowledge of Messages

8.5 Comparing the Two Approaches

One aim of formalising agents’ knowledge was to investigate the goals of non-
injective agreement and key distribution. We have verified them on all clas-
sical protocols analysed so far (for example, Needham-Schroeder, Yahalom,
Otway-Rees and Woo-Lam) using both our approaches to knowledge (§§8.1
and 8.2).

The analysis of BAN Kerberos supports the claim that the two approaches
are equivalent. Theorems 8.3.2 and 8.3.3, obtained by trace inspection, ap-
pear to convey the same guarantees as Theorems 8.3.4 and 8.3.5 respec-
tively, which are obtained by message reception. Also Kerberos IV confirms
the equivalence: Theorems 8.4.1 to 8.4.4 appear to be equivalent to Theo-
rems 8.4.5 to 8.4.8 respectively.

According to our principle of goal availability (Chapter 5), no theorem
has practical relevance unless its assumptions are verifiable. The guarantees
proved by either approach become practically applicable at the same time,
namely upon reception of the suitable messages. Nevertheless, one approach
inherently lacks this level of formal detail.

Since the approach based on trace inspection cannot rely on a formal-
isation of the instant of reception, it prescribes scanning a trace to pin-
point a suitable sending event, and hence may seem technically more com-
plicated. However, the other approach requires deriving the very reception
event whereby an agent learns the message component under study, typically
a session key (see the mentioned theorems of form BKg X imp Gets and
KIVg Y imp Gets). This is not always easy during our proofs. For example,
a message sealed with the session key is often available, but reception of such
a message may only confuse our aim because there obviously exists no rule
to derive knowledge of the encrypting key from knowledge of a ciphertext.
So, the two approaches seem equally complicated.

The guarantees obtained by trace inspection on protocols based on time-
stamps also add a temporal requisite to the goal of authentication: estab-
lishing that an agent who is uncompromised creates a message containing
the current time as a timestamp also expresses when the agent was alive.
Therefore, this approach will be used to compare the temporal requisites
that timestamps or nonces add to a protocol design (§8.6), because the other
approach clearly is not suitable to the purpose.

Both versions of Kerberos require both peers to use a session key to cre-
ate new messages. On the contrary, let us consider a protocol that delivers
a session key to a peer without requiring the peer to use it. Since the ap-
proach based on trace inspection expresses knowledge of a message (and its
components) via the ability to create the message, it cannot be used to prove
any significant properties in this case. By contrast, the approach based on
message reception seems more appropriate to use in this case: it can express
the peer’s knowledge of the session key upon its reception, thus allowing
investigation of key distribution and non-injective agreement.

8.5 Comparing the Two Approaches 131

Recall our strong definition of key distribution (§4.7). We shall see (§8.5.1)
that if the delivery of the session key is not the last step of the protocol,
then certain forms of key distribution can be met depending entirely on the
protocol design. Conversely, we can conclude that when the delivery of a
session key to an agent is the last step of the protocol, key distribution to
that agent is not available to the peer because none of the protocol events
can be used to prove that the session key was received.

8.5.1 On Otway-Rees and Otway-Rees-Bella

The Otway-Rees protocol [58, p. 244] offers another comparison. The respon-
der B obtains the session key from the Server and forwards it to the initiator
A in the last message of the protocol (Figure 8.4).

1. A → B : M, A, B, {|Na, M, A, B|}Ka

2. B → S : M, A, B, {|Na, M, A, B, |}Ka, {|Nb, M, A, B|}Kb

3. S → B : M, {|Na,Kab|}Ka, {|Nb,Kab|}Kb

4. B → A : M, {|Na,Kab|}Ka

Fig. 8.4. Otway-Rees protocol

The protocol is easy to understand, its third message being the most
important. It sees the Server send B two certificates respectively sealed with
A and B’s long-term keys, each containing a copy of the session key. So, B
learns the session key from decrypting the second certificate, and forwards
the rest to A. Upon reception of the last message, A learns the session key
and binds it to B having seen Na returned, which she initially associated
with B. Similarly, B binds the session key to A having seen Nb returned,
which he associated with A in the second message. This might have been
an insecure choice because A’s identity arrived in the clear from the first
message, but the Server confirms the association by matching the contents
of the two cypher-texts received in the second message.

Because the protocol delivers the session key to A in the last message,
key distribution of the session key to A certainly is not available to B. The
other half of the goal, key distribution to B, seems more interesting to study.
However, we cannot use trace inspection here because B is simply forwarding
a certificate, containing the session key, which already is in the traffic. We
can take the approach based on message reception instead.

The analysis of the protocol by the BAN logic led to the following con-
clusion: “it is interesting to note that this protocol does not make use of Kab
as an encryption key, so neither agent can know whether the key is known
to the other” [58, p. 247]. More precisely, the BAN logic cannot derive the
usual conclusion that

A |≡B |≡A
Kab←→ B

132 8. Modelling Agents’ Knowledge of Messages

We observe that the Spy can intercept the third message, building the
fourth on her own and sending it off to A (Figure 8.5). This qualifies as an
attack on key distribution to A.

3. S → B : M, {|Na,Kab|}Ka, {|Nb,Kab|}Kb (intercepted)

4′. Spy → A : M, {|Na,Kab|}Ka

Fig. 8.5. Key distribution attack on Otway-Rees

Thanks to our experience with the verification of the various Kerberos
protocols, we decide to update the third message of Otway-Rees so that en-
cryption under B’s shared key includes the other encryption. The rest is
left unaltered. We address the resulting protocol as Otway-Rees-Bella (Fig-
ure 8.6). Like Otway-Rees, the updated protocol makes no use of the session
key as an encryption key, though it makes key distribution to A available to
B. In fact, the BAN logic fails to capture knowledge of the messages that
are received, as does our approach based on trace inspection. However, using
message reception, we discover that the reason Otway-Rees misses the goal
is entirely due to message design.

3. S → B : M, {|{|Na,Kab|}Ka ,Nb,Kab|}Kb

Fig. 8.6. Otway-Rees-Bella protocol: fragment

Our claims on the Otway-Rees-Bella protocol can be confirmed formally.
Below, evs is a generic trace of the updated protocol model, orb, which comes
with the file OtwayReesBella.thy (Figure 3.1). The new form of the third
message allows us to track B’s participation. The Spy cannot substitute him
because she cannot decrypt the message. More formally, A’s certificate is kept
confidential until B extracts it and sends the last message (Theorem 8.5.1).
Observe that assuming the Says event, which A can verify in practice, is
indispensable to binding the identity of the responder B.

Theorem 8.5.1 (ORB analz hard). If A and B are uncompromised and
evs contains

Says A B {|Nonce M,AgentA,AgentB,

Crypt(shrK A){|NonceNa,Nonce M,AgentA,AgentB|}|}

and is such that

Crypt(shrK A){|NonceNa,Key Kab|} ∈ analz(knows Spy evs)

then evs contains

Says B A {|Nonce M,Crypt(shrK A){|NonceNa,Key Kab|}|}.

8.5 Comparing the Two Approaches 133

The same result cannot be proved for the original Otway-Rees, where
the assumption holds also before B acts. Also, the result fails to hold if
we replace analz with parts because the certificate appears as a component
of the traffic even before B sends the last message. The proof is long, the
subgoal arising from the last protocol step being particularly complicated.
That subgoal requires simplifying the assumption

Crypt(shrK A){|AgentB,Nonce M,NonceNa,Key Kab|}
∈ analz({Key K} ∪ (knows Spy evs4))

Its symbolic evaluation is not trivial. A rewriting rule can be proved to inform
the simplifier that no session key is used to encrypt a certificate in the protocol
(Lemma 8.5.1).

Lemma 8.5.1 (ORB analz insert freshCryptK). If evs is such that

Key K /∈ analz(knows Spy evs)

and

K ′ 6∈ range shrK

then evs is such that

Crypt KX ∈ analz({Key K ′} ∪ (knows Spy evs)) if and only if
Crypt KX ∈ analz(knows Spy evs).

The proof can be developed through the conventional method for the session
key compromise theorem (§4.5). However, it requires several subsidiary results
concerning the form of the message sent by the Server, and of that received
by B, which apparently originated with the Server.

Another important portion of reasoning asserts that an agent who is un-
compromised sends the last message of the protocol only upon reception of
an integral, suitable instance of the last but one (Theorem 8.5.2).

Theorem 8.5.2 (ORB OR4 imp Gets). If B is uncompromised and evs
contains

Says B A {|Nonce M,Crypt(shrK A){|NonceNa,Key Kab|}|}

then, for some Nb, evs contains

Gets B {|Nonce M,Crypt(shrK B){|Crypt(shrK A){|NonceNa,Key Kab|},
NonceNb,Key Kab|}|}.

We now have all fragments of A’s reasoning. Upon reception of the last
message of the protocol, A concludes that the certificate is available to the Spy
by an analogous of Lemma 8.2.2 proved for this protocol, then by H ⊆ analzH
and finally by message decomposition. This means that the second assump-
tion of Theorem 8.5.1 holds. By an appeal to that theorem, A derives that
B indeed participated in the protocol by sending the last message. The-
orem 8.5.2 can now be applied, confirming that B received an intelligible

134 8. Modelling Agents’ Knowledge of Messages

message quoting the same session key received by A. Certainly, B can de-
crypt a message sealed with his own shared key, and extract the session key.
The resulting guarantee confirms to A that the session key she receives is
also known to her peer B (Theorem 8.5.3).

Theorem 8.5.3 (ORB A keydist to B). If A and B are uncompromised
and evs contains

Says A B {|Nonce M,AgentA,AgentB,

Crypt(shrK A){|NonceNa,Nonce M,AgentA,AgentB|}|}
and

Gets A {|Nonce M,Crypt(shrK A){|NonceNa,Key Kab|}|}
then evs is such that

Key Kab ∈ analz(knows B evs).

The final theorem lets us conclude that our updated Otway-Rees protocol
makes the goal of key distribution to B available to A. It only differs from the
original protocol in the form of the message issued by the Server. Nevertheless,
as with Otway-Rees, our protocol does not make use of Kab as an encryption
key but does inform A that B knows the session key. Hence, our protocol
falsifies the BAN logic claim reported above.

We have learnt that prescribing no use of a session key after its delivery
must not be taken as generally undermining availability of key distribution.

8.5.2 On Public-key Protocols

Testing our approaches to agents’ knowledge on public-key protocol unveils
limitations of each one. For example, let us consider the first step of the
Needham-Schroeder protocol and suppose that it takes place during the his-
tory modelled by the trace evs. Then, evs contains the event

Says A B (Crypt(pubK B){|Agent A,NonceNa|})
whereby agent A issues a nonce Na and sends it to B inside a certificate
sealed with B’s public key. Since A does not know B’s private key, which is
necessary to decrypt the certificate, we cannot establish that Na belongs to
analz(knows A evs). However, A in fact knows Na because she just created it.
Trace inspection regains its attraction in this case because it can be used to
prove that A issues the entire certificate and therefore knows its components.
Nonetheless, B will also know Na upon reception of the cipher, but this again
requires reasoning with message reception. Upon event

Gets B (Crypt(pubK B){|Agent A,NonceNa|})
we can formally prove that Na belongs to analz(knows B evs) because B
knows the private key to decrypt the certificate.

Therefore, a combination of the two approaches, which can be easily im-
plemented, will yield the best results when analysing public-key protocols.

8.6 Timestamps Versus Nonces on the Same Design 135

8.6 Timestamps Versus Nonces on the Same Design

Timestamps form a linear order whereas nonces merely are random numbers;
hence, it can be expected that the former may convey stronger temporal
guarantees on a same protocol design. First, we provide an informal account
(§8.6.1) and then we support it formally (§8.6.2).

8.6.1 Informal Account

With timestamps, any agent can check the freshness of a message containing
a timestamp at any point, even without having yet participated in the proto-
col. Furthermore, a timestamp typically informs of the exact time when the
message it accompanies was created, something that nonces cannot accom-
plish. However, three assumptions must be met. Firstly, agents must know
the specific lifetime for the timestamp, though lifetimes are in general not se-
cret. Secondly, and very importantly, the agent who inserted the timestamp
must be trusted to have acted honestly; otherwise, he could insert a later
timestamp than the current one to try and give the message a longer va-
lidity. Thirdly and most importantly, all agents must run a synchronisation
protocol to synchronise their clocks. It could be argued that the threats to
the synchronisation protocol might offset any gains obtained from using time-
stamps in the security protocol, but this matter is outside the focus of our
research.

Nonces can be used to express message freshness. An agent is required to
first participate in the protocol by sending a fresh nonce at a time instant with
respect to which he requires a guarantee of freshness of a later message. An
example comes from the shared-key Needham-Schroeder protocol, which was
presented above (Figure 2.6). Its first two steps are recalled here (Figure 8.7).

1. A → S : A, B,Na

2. S → A : {|Na, B,Kab, {|Kab, A|}Kb |}Ka

Fig. 8.7. Shared-key Needham-Schroeder protocol: fragment

It can be seen that A issues the fresh nonce Na with the first message
and sees it returned with the second, in which the Server is required to copy
it. Because the nonce is random, upon reception of the second message, she
concludes that the message was issued some time after she issued the first
one. She does not learn when exactly the second message was created, but
can decide to discard it should it be received too late with respect to her
issue of the nonce. Clearly, the more the nonce is truly random, the more
this reasoning is reliable.

136 8. Modelling Agents’ Knowledge of Messages

8.6.2 Formal Account

Our aim here is to develop some formal argument to support or undermine
the informal discussion anticipated above. Finding a suitable benchmark was
not too difficult. A fair comparison of the outcomes of timestamps to those of
nonces requires an analogous protocol layout. BAN Kerberos and the shared-
key Needham-Schroeder protocol seem appropriate, as the former may be
viewed exactly as the latter “modified with the addition of timestamps” [121].
We will compare the temporal requisites of the goals of message authenticity
and agent authentication as they are achieved by the two protocols. The other
goals are time independent. Our experiments formally confirm that time-
stamps provide stronger temporal requisites to trusted agents on the same
protocol design, provided that the agents’ clocks are kept synchronised [39].

Recall the Needham-Schroeder protocol from Figure 2.6 (§2.2.4) and the
BAN Kerberos protocol from Figure 6.1 (§6.3). The authenticity arguments
for the two protocols are easy to compare. For brevity, we omit most of
the formal syntax here as we have variously demonstrated it above. The
complete treatment comes with the files Kerberos BAN.thy and NS Shared.thy

(Figure 3.1).
The authenticity argument for BAN Kerberos (Theorem 6.5.2) assures an

uncompromised protocol initiator A that the message

{|Tk , B,Kab,Ticket |}Ka

originated with the Server. Since the Server operates reliably, the guarantee
informs A that the message and the session key it contains were created at
time Tk . In the same setting, the message

{|Na, B,Kab,Ticket |}Ka

of the Needham-Schroeder protocol can be proved to have originated with the
Server [33, 34]. Due to Na’s being A’s nonce, A is assured that the message
is more recent than the instant when she issued Na. This temporal requisite
also applies to the session key Kab. Though not identical, the two theorems
appear to convey equivalent guarantees.

The two protocols provide different temporal requisites to the respective
responders. An uncompromised protocol responder B can be assured that
the ticket

{|Tk , A,Kab|}Kb

of the BAN Kerberos protocol originated with the Server (Theorem 6.5.3).
By the presence of the timestamp, B derives that the ticket and the session
key were created at time Tk , because the Server can be relied upon. No such
guarantee is available to B when running Needham-Schroeder, because the
ticket has the form

{|Kab, A|}Kb

8.6 Timestamps Versus Nonces on the Same Design 137

Even if we prove that the ticket originated with the Server, B obtains no
information on how recent Kab is. This is due to the fact that B did not
participate earlier in the protocol and hence could not insert his own nonce.

With regard to the goal of authentication, Theorem 8.3.2 can be also
invoked to formally assure B that A, who must be assumed uncompromised
so that he acts legally, was alive at time Ta. An analogous guarantee we have
proved for Needham-Schroeder conveys a similar requisite (Theorem 8.6.1).
Here, evs is a generic trace of the formal protocol model ns shared. The double
concatenation of Nb formalises the last message of the protocol. Precisely, B
is informed that A was alive after B created his nonce Nb.

Theorem 8.6.1 (NSS B authenticates&keydist to A). If A and B are
uncompromised, evs is such that

Crypt(shrK B){|Key Kab,AgentA|} ∈ parts(spies evs) and
CryptKab{|NonceNb,NonceNb|} ∈ parts(spies evs) and
Key Kab /∈ analz(spies evs)

then evs is such that

A Issues B with (CryptKab{|NonceNb,NonceNb|}) on evs.

Likewise, Theorem 8.3.3 can be also invoked to formally assure A that B,
who must be assumed uncompromised, was alive after time Ta. Precisely, B
does not update Ta and hence is using the timestamp as a nonce. Had he up-
dated it, A would have been informed of the exact time when he was alive. An
analogous guarantee we have proved for Needham-Schroeder (Theorem 8.6.2)
must be interpreted with care.

Theorem 8.6.2 (NSS A authenticates&keydist to B). If A and B are
uncompromised, evs is such that

Crypt(shrK A){|NonceNa,AgentB,Key Kab,Ticket |}
∈ parts(spies evs) and

CryptKab(NonceNb) ∈ parts(spies evs) and
Key Kab /∈ analz(spies evs)

then evs is such that

B Issues A with (CryptKab(NonceNb)) on evs.

It appears that A is simply informed that B creates a message containing
the nonce Nb. Since Nb was issued by B, A cannot obtain any temporal
requisite about B’s operation directly from the use of nonces. However, she
indirectly gets a similar guarantee. Because the session key is confidential,
an assumption that can be relaxed by the appropriate confidentiality argu-
ment, A knows that B learnt the session key because she sent it to him. The
conclusion of the theorem confirms that B is using the session key (to issue
a certificate). In consequence, A learns that B was alive at some later time

138 8. Modelling Agents’ Knowledge of Messages

after she sent him the session key. We emphasise that this reasoning must
not be ascribed to the use of nonces.

Observe that our approach to agents’ knowledge based on trace inspection
turns out to be particularly suitable to conduct the reasoning presented here,
while the other approach is not much help in this case. The two theorems
presented about the Needham-Schroeder protocol can be proved using the
same method discussed above for theorems of the same form. Indeed, the two
theorems also qualify as authentication (precisely, non-injective agreement on
the session key) and key distribution guarantees, which can be made available
to the respective peers by relaxing the confidentiality assumptions. It also
follows that all Issues theorems seen above can be variously interpreted to
express freshness of the involved messages or, likewise, to add a temporal
requisite to authentication.

Our findings formally support the informal arguments sketched above:
nonces appear to convey weaker temporal guarantees than timestamps if
used on the same protocol design. However, if the design can be enriched to
accommodate both peers’ insertion of nonces, then the guarantees become
comparable, as confirmed here for the protocol initiator.

Such protocols making a more complicated use of nonces do exist. One
important example is the Yahalom protocol [58, p. 257], whose reliance on
nonces is not straightforward. The protocol uses symmetric cryptography and
essentially aims at distributing a session key to its peers with the help of a
trusted Server (Figure 8.8).

1. A → B : A,Na

2. B → S : B, {|A,Na,Nb|}Kb

3. S → A : {|B,Kab,Na,Nb|}Ka , {|A,Kab|}Kb

4. A → B : {|A,Kab|}Kb , {|Nb|}Kab

Fig. 8.8. Yahalom protocol

We observe that Paulson’s formal guarantees of agent authentication
about this protocol provide significant temporal requisites to both peers [135].
They can be found with file Yahalom.thy of the Isabelle repository [33, 34].

Precisely, a theorem holds (Y YM3 auth B to A, omitted here), con-
firming that when A receives the third message, B has already sent the cor-
responding instance of the second. This confirms to A that B sent the second
message after she issued the nonce Na with the first message, because B has
used Na.

An analogous guarantee exists for B (Y YM4 imp A said YM3, omitted
here). It confirms that, if B sent the second message and receives the last
message made with a confidential session key, then it was A who sent him
the last message. It also tells B that A was alive after he invented the nonce
Nb with the second message, because A has used Na.

9. Verifying Another Deployed Protocol

Version V of Kerberos makes a lighter use of encryption than Version
IV. Formal analysis confirms that both versions essentially achieve
the same goals. An important byproduct is the development of new
proof methods and new unicity guarantees.

Version V [101] is the latest deployed Kerberos protocol. It is based on the
same layout as that of the previous versions but poses different requirements
on the environment in which it is to run. It also is fundamentally different
in terms of design because of a different use of encryption. For these reasons,
many consider it an entirely new protocol and, therefore, worthy of formal
analysis.

The changes in terms of working requirements are published [102]. We
will briefly review them in this chapter, pointing out those that are relevant
to formal verification. As we have often pointed out throughout this book,
building a realistic formal model is fundamental to developing realistic proofs
of correctness. It is therefore important to scrutinise which features of the new
protocol version can and/or must be modelled formally. The major differences
that the new version introduces are in terms of design: the tickets are no
longer doubly encrypted, as we detail in the next section.

Kerberos notoriously is designed to operate on small-scale networks such
as LANs. Each LAN can be seen as a Kerberos realm. Each realm has a Kas-
Tgs pair, and it is possible to use authorisation credentials granted by Tgs
on the local realm to access another Tgs on a remote realm. Kerberos V sup-
ports such inter-realm operations better than the earlier version by allowing
for a more efficient — hierarchical — management and transmission of the
Servers’ long-term secrets between realms. However, such management and
transmission strictly speaking are not part of the actual Kerberos protocol,
as they are performed out of band. In consequence, they will not be part of
our analysis.

Our model Kerberos Servers are not formally bound to any specific realm,
and our inductive protocol model allows for various instances of each protocol
message to be repeated indefinitely over each trace. It may however be in-
teresting to explicitly model an entire array of Kerberos Servers, indefinitely
long, perhaps using techniques that Paulson developed for the BULL recur-

140 9. Verifying Another Deployed Protocol

sive protocol [131]. These ideas will be subjects of future research if their
importance is confirmed.

This chapter details the Kerberos V protocol (§9.1), its inductive model
(§9.2) and its proved guarantees (§9.3). The presentation skims over those
details that are common with Kerberos IV, which we have already seen in
Chapter 7. Wherever appropriate, comparative treatment between the two
versions is provided.

9.1 The Kerberos V Protocol

We begin the presentation of the protocol by outlining its new working re-
quirements.

Kerberos V is independent of the encryption algorithm. This is imple-
mented as a separate software module that the administrator can appro-
priately insert, while Kerberos IV only used DES, which may suffer export
limitations. Hence, each ciphertext of the new version carries an identifier
specifying which encryption algorithm was used to create it. A similar evo-
lution concerns the reliance on a specific underlying network protocol, which
was only the Internet Protocol in the old version.

Additional changes of working requirements pertain to the ticket lifetimes.
While the lifetime used to be implemented as an 8-bit number of five minute
units, resulting in a maximum of approximately 21 hours, Kerberos V car-
ries a starting date and an expiry date for each ticket, a feature that can
account for lifetimes of any length. Other changes are added support for cre-
dential forwarding from one host to another, and for renewing tickets. Also
the naming system is more structured in Kerberos V.

Interoperability increases in the new version thanks to the standardisa-
tion [94] of the encoding philosophy for multi-byte values in protocol mes-
sages. This prevents the chance of a sender and a receiver encoding the value
in their own respective native order, which would require a conversion.

The protocol is in Figure 9.1. It can be seen that all steps are inherited
unvaried from the previous version, except for steps 2 and 4, where the tick-
ets are not doubly encrypted. In particular, Kas sends the authticket as the
second component of the second message, while the first component is the
same as the entire old message though it does not include the authticket. The
same structure does Tgs use to send the servticket in the fourth message.

9.2 Modelling Kerberos V

After a careful consideration of each of the novel working requirements out-
lined above, we decided not to include them in our formal model. It was a
carefully biased decision. On the one hand, we found that the influence that

9.2 Modelling Kerberos V 141

Authentication

1. A → Kas : A, Tgs,T1

2. Kas → A : {|authK , Tgs,Ta|}Ka , {|A, Tgs, authK ,Ta|}Ktgs| {z }
authTicket

Authorisation

3. A → Tgs : {|A, Tgs, authK ,Ta|}Ktgs| {z }
authTicket

, {|A,T2 |}authK| {z }
authenticator

, B

4. Tgs → A : {|servK , B,Ts|}authK , {|A, B, servK ,Ts|}Kb| {z }
servTicket

Service

5. A → B : {|A, B, servK ,Ts|}Kb| {z }
servTicket

, {|A,T3 |}servK| {z }
authenticator

6. B → A : {|T3 + 1|}servK

Fig. 9.1. Kerberos V protocol

these issues play on the main protocol goals, such as confidentiality and au-
thentication (Chapter 4), was intuitive informal human reasoning. On the
other side, a formal account of these issues appeared to be non-trivial. For-
mal models are notoriously only approximations to reality. Cryptography,
for example, is notoriously reduced to a black-box primitive, thus neglecting
differences such as the non-standard PCBC (Plain and Cipher Block Chain-
ing) mode of DES used in Kerberos IV, and the more standard CBC mode
used in the other version. Also, formal accounts are to be used particularly
where human intuition falters. For example, we have seen the subtle outcomes
of encrypting certain message components rather than leaving them in the
clear with the Otway-Rees protocol (§8.5.1), and many similar cases can be
found [58, 135]. In this vein, we shall see how difficult it would be to spot
a certain lack of explicitness by informal reasoning on a smartcard protocol
(§11.4).

By contrast, an informal account of the main design change, where the
tickets are not doubly encrypted, is not trivial. On the one hand, we are
currently aware that “extra encryption” is not necessarily the same as “extra
security” [7, 14, 152]. On the other hand, not only did we prove the strong
goals of Kerberos IV with double encryption, but used the same design strat-
egy to somewhat strengthen the Otway-Rees protocol (§8.5.1). While it is
clear that Otway-Rees can be strengthened exactly due to the use of extra
encryption, it is not as clear to what extent double encryption determines

142 9. Verifying Another Deployed Protocol

the strong goals of Kerberos IV. Modelling the disposal of double encryption
of Kerberos V is expected to help clarify this issue.

The protocol model kerbV can be found with file KerberosV.thy (Fig-
ure 3.1). As with the previous version, it is built on top of Public.thy,
although it only uses symmetric cryptography. The inductive definition of
kerbV resembles that of kerbIV seen above (§7.2) except for the formalisation
of steps 2 and 4, which the postconditions of rules KV2 and KV4 respectively
show in Figure 9.2.

KV2 :
[[evs2 ∈ kerbV; Key authK 6∈ used evs2; authK ∈ symKeys;
Says A’ Kas {|Agent A, Agent B, Number T1|} ∈ set evs2]]

=⇒ Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs,
Number (CT evs2)|},

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK,
Number (CT evs2)|}|}

evs2 ∈ kerbV

KV4 :
[[evs4 ∈ kerbV; Key servK 6∈ used evs4; B 6= Tgs;
authK ∈ symKeys; servK ∈ symKeys;
Says A’ Tgs {|Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key authK, Number Ta|},
Crypt authK {|Agent A, Number T2|}, Agent B|} ∈ set evs4;

¬ expiredAK Ta evs4; ¬ expiredA T2 evs4]]
=⇒ Says Tgs A {|Crypt authK {|Key servK, Agent B, Number (CT evs4)|},

Crypt (shrK B) {|Agent A, Agent B, Key servK,
Number (CT evs4)|}|}

evs4 ∈ kerbV

Fig. 9.2. Inductive model of Kerberos V: fragment

Rules KV3 and KV5 are omitted from this presentation. They accom-
modate the absence of double encryption among their preconditions, corre-
sponding to rules KV2 and KV4 respectively, so as to model reception of the
right messages.

The current model rests on the formalisation of agents’ knowledge based
on trace inspection seen in the previous chapter, so there is no mention of
the Gets event or of the knows function, but there is interest in the Issues
properties. The usual formalisation of timestamping (§6.2) is retained. It
can be seen that Tgs operates the temporal check advanced above (§7.3.5,
condition 7.1) to make the goals of confidentiality, authentication and key
distribution available to the peers in our threat model. It remains to be
verified whether Kerberos V achieves the same results even with lighter use
of encryption. This is the main subject of the next section.

9.3 Verifying Kerberos V 143

9.3 Verifying Kerberos V

This section outlines the guarantees we have proved about Kerberos V. We
skip everything that turned out to be in common with Kerberos IV, focusing
only on the novel results. Here, evs is a generic trace of the formal protocol
model kerbV. We follow our usual conventions (§1.3.2) to name the theorems.

9.3.1 Main Guarantees

The design variations of Kerberos V produce minor modifications to the
authenticity and unicity arguments. Theorems analogous to Theorems 7.3.3
and 7.3.5 continue to assess authenticity of the authkey and of the servkey re-
spectively (KV authK authentic and KV servK authentic, omitted here).
However, they present existentially quantified tickets in the conclusions be-
cause the new message design does not let the assumptions bind the tickets.
Fragments of the proof script pertaining to the unicity argument can be found
in Appendix B.1.

We were pleased to observe that also the main guarantees proved about
Kerberos IV — confidentiality, authentication and key distribution — sub-
stantially remain unvaried in the new version. Adherence to goal availability
is maintained, ultimately confirming that the removal of double encryption
has not weakened the protocol.

The confidentiality argument has merely to accommodate the variations
of message forms. For example, this can be observed on the confidentiality
guarantee for B on the servkey (Theorem 9.3.1), which is very similar to
Theorem 7.3.14.

Theorem 9.3.1 (KV Confidentiality B). If A and B are uncompromi-
sed, B is not Tgs and evs is such that

Crypt(shrK B){|Agent A,AgentB,Key servK ,Number Ts|}
∈ parts(spies evs) and

Crypt authK{|Key servK ,Agent B,Number Ts|}
∈ parts(spies evs) and

Crypt(shrK A){|Key authK ,AgentTgs,Number Ta|}
∈ parts(spies evs) and
¬expiredAKTa evs and ¬expiredSKTs evs

then evs is such that

Key servK 6∈ analz(spies evs).

Observe that this version is for the original protocol, where Tgs does not
operate our temporal check on expiry times. The corresponding version for
the updated Kerberos V protocol (KVu Confidentiality B, omitted here)
turns out to be identical to the theorem proved for the similarly updated

144 9. Verifying Another Deployed Protocol

Kerberos IV protocol (KIVu Confidentiality B, §7.3.5). Both theorems in
fact do not involve instances of the second or fourth message. This reason-
ing confirms that also Kerberos V in particular makes confidentiality of the
servkey available to the responder in our threat model.

The same minor variations affect the authentication argument. Fragments
of the relevant proof script can be found in Appendix B.3. For example, the
combined guarantee of authentication of A with B and of key distribution
of the servkey to A (Theorem 9.3.2) is, as we can expect, very similar to
Theorem 8.4.4.

Theorem 9.3.2 (KV A authenticates&keydist to B). If A and B are
uncompromised, B is not Tgs and evs is such that

Crypt servK (Number T3) ∈ parts(spies evs) and
Crypt authK{|Key servK ,Agent B,Number Ts|}
∈ parts(spies evs) and

Crypt(shrK A){|Key authK ,AgentTgs,Number Ta|}
∈ parts(spies evs) and

Key authK /∈ analz(spies evs) and Key servK /∈ analz(spies evs)

then evs is such that

B Issues A with (Crypt servK (Number T3)) on evs.

The specular version (KV B authenticates&keydist to A, omitted here)
turns out to be identical to the theorem proved for Kerberos IV (Theo-
rem 8.4.3).

9.3.2 Novel Proof Methods

Despite our neat and simple conclusions, verifying Kerberos V was everything
but a mere exercise. New proof methods had to be invented and developed,
significantly beyond the mentioned simplification of terms involving the tick-
ets.

For example, cryptic variables such as authTicket and servTicket , for-
malising the tickets, often appear throughout the proof process. They must
be expanded, namely their form must be derived, for Isabelle’s simplifier to
be able to perform symbolic evaluation of terms involving the parts or analz
operators. Otherwise, the simplifier would merely carry those variables along
without performing any term reduction; the variables could potentially hide
some message components, such as cryptographic keys, that would influence
the simplification. The reader can endeavour in almost any proof attempt to
obtain a demonstration of this observation. To show just one of innumerable
examples, the subgoal concerning step 5 of the proof of KV servK authentic

presents a term that demands simplification. It is

9.3 Verifying Kerberos V 145

Crypt authK{|Key servK ,AgentB,Ts|}
∈ parts

({servTicket}∪
{Crypt servK ′{|Agent A,Number(CT evs5)|}}∪

(spies evs5))

Expanding the form of the tickets is easy with Kerberos IV when they
are encrypted with confidential keys — respectively the initiator’s shared key
and an authkey. This was possible exactly thanks to the presence of double
encryption. Conversely, it is impossible with Kerberos V for the opposite
reason, because the message is concatenated. For example, let us consider
the fourth message of Kerberos V. When the message

{|Crypt authK{|Key servK ,Agent B,Number Ts|}, servTicket |} (9.1)

appears in the traffic, there is no way to derive the form of servTicket because
the message is concatenated; hence, the Spy might have replaced its second
component with anything.

Fortunately, we could find an alternative and simple proof method to
derive everything that is needed to know about the tickets for symbolic eval-
uation to get through. Here it is.

Whenever a full instance of the second or of the fourth messages of
Kerberos V appears in the traffic, then so does the mentioned ticket.

For example, this method applies to message 9.1. It is important to re-
call here that appearance in the traffic means that the message belongs to
parts(spies evs), where evs is the current trace in the subgoal. The method
can also be phrased in terms of analz(spies evs). Clearly, it also applies to au-
thtickets whenever they appear in an instance of the second message. The full
proof script about the protocol confirms that the lemmas implementing the
method just described (KV Says ticket parts and KV Says ticket analz,
omitted here) are vastly used.

Observe that this method can be partially used also with Kerberos IV, at
least in terms of the parts operator. It would not be straightforward to use it
in terms of the analz operator because this would require case studies on the
keys encrypting the entire (second or fourth) messages.

The major proof obstacle derives from the attempt to prove an Issues
property (Theorem 9.3.3).

Theorem 9.3.3 (KV A Issues B). If A and B are uncompromised, B is
not Tgs and evs contains

Says A B {|servTicket ,Crypt servK{|AgentA,Number T3 |}|}

and is such that

Key servK /∈ analz(spies evs)

146 9. Verifying Another Deployed Protocol

then evs is such that

A Issues B with (Crypt servK{|AgentA,Number T3 |}) on evs.

According to the general method (§8.1.2), this theorem is necessary to sub-
sequently prove a combined guarantee of authentication and key distribution
(KV B authenticates&keydist to A, omitted here). The proof scripts con-
firm that this can be done routinely with Kerberos V. However, the proof of
Theorem 9.3.3 is more problematic than the corresponding one for Kerberos
IV in part because of the mentioned existential conclusions of the authentic-
ity theorems. Precisely, the subgoal corresponding to step 5 of the protocol
is ultimately reduced as in Figure 9.3. It is difficult to see at first glance how
to solve this subgoal.

[[A 6∈ bad; B 6∈ bad; A 6= Kas; A 6= Tgs; B 6= Tgs; evs5 ∈ kerbV;
authK ∈ symKeys; servK ∈ symKeys;
Says Tgs’ A {|Crypt authK {|Key servK, Agent B, Number Ts|}, servTicket|}
∈ set evs5;

valid Ts wrt T2; Key servK 6∈ analz (spies evs5);
servTicket ∈ parts (spies evs5);
Says A B {|servTicket, Crypt servK {|Agent A, Number (CT evs5)|}|}
6∈ set evs5;

Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Ta|}, authTicket|}
∈ set evs5;

Key authK 6∈ analz (spies evs5);
Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Ta’|}, authTicket’|}
∈ set evs5;

authTicket ∈ parts (spies evs5);
Says Tgs A {|Crypt authK {|Key servK, Agent B, Number Ts|},

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|}|}
∈ set evs5;

Crypt servK {|Agent A, Number (CT evs5)|} ∈ parts (spies evs5)]]
=⇒ False

Fig. 9.3. Proving an Issues property for Kerberos V

When we proved an analogous guarantee (Theorem 7.3.17) for Kerberos
IV, we appealed to a lemma KIV Says K5 concluding that A sends the exact
instance of the fifth message that would contradict the Says A B . . . /∈ set evs5
assumption and therefore solve the subgoal. However, an analogous lemma
that can be proved for Kerberos V carries a crucial existential quantifier upon
the copy of the servTicket in the conclusion (Lemma 9.3.1).

Lemma 9.3.1 (KV Says K5). If A and B are uncompromised and evs
contains

Says Tgs A {|Crypt authK{|Key servK ,Agent B,Number Ts|}, servTicket |}

and is such that

9.3 Verifying Kerberos V 147

Crypt servK{|AgentA,Number T3 |} ∈ parts(spies evs) and
Key authK /∈ analz(spies evs)

then, for some sT, evs contains

Says A B {|sT ,Crypt servK{|Agent A,Number T3 |}|}.

This lemma cannot be strengthened. Because the fourth message is no longer
doubly encrypted, there exists no guarantee that the servTicket that Tgs
issues for A is not altered during transmission to A. Because that ticket is
unintelligible for A, she merely has to forward it to B. In consequence, A will
forward anything (of the right length) that the Spy might have inserted in-
stead of the original ticket. The lemma inevitably reflects this by existentially
quantifying variable sT in its conclusion. That variable cannot be stated to
necessarily match servTicket .

Applying Lemma 9.3.1 to the subgoal described above indicates that the
current trace evs5 also contains the event

Says A B {|servTicket ′,Crypt servK{|AgentA,Number(CT evs5)|}|} (9.2)

but it is impossible to prove that servTicket equals servTicket ′, which would
let us conclude.

Significant experiments — most of which failed! — were conducted at this
stage to find an alternative proof method. Finally, we realised that a novel,
meticulous reasoning on timestamps could help. The new method is based on
the fundamental observation that uncompromised agents always insert the
right timestamps in the messages they form. Each timestamp is taken by an
uncompromised agent as the current time of the trace. In consequence, an
uncompromised agent never issues a timestamp before the right time for it.

To demonstrate these considerations, Figure 9.4 shows a simple protocol
trace that only records an uncompromised agent A running the protocol up
to step 2. Recall that traces are lists of protocol events and that are built in
reverse chronological order (§3.8). The example trace begins with the event
formalising step 1 of the protocol and continues with the event formalising
step 2. This version of the protocol model does not include message reception;
otherwise, the appropriate reception event would have appeared between the
two given events.

Says Kas A {|Crypt (shrK A) {|Key authK, Agent Tgs, Number 1|},
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number 1|}|}

Says A Kas {|Agent A, Agent Tgs, Number 0|}

Fig. 9.4. Example trace belonging to the inductive model of Kerberos V

148 9. Verifying Another Deployed Protocol

Observe that the trace is initially empty; hence, A picks 0 as the current
time to insert as the timestamp in the first event. Likewise, Kas picks 1 as
the current time of the trace with the first event only, and inserts it as the
timestamp in the second event. The assumption that A is uncompromised
guarantees that, if she continues this trace with the event formalising step 3,
she will insert 2 as the timestamp in that event. Clearly, the Spy behaves
arbitrarily; hence, she can insert any timestamp, past or future, in any event.

Following these considerations, we can prove that an uncompromised
agent always inserts the right timestamp in an authenticator, namely that
he cannot have inserted t as a timestamp in a trace whose length is exactly
t (Lemma 9.3.2).

Lemma 9.3.2 (KV honest never says current timestamp in auth).
If A is uncompromised, evs and X are such that

Number(CT evs) ∈ parts{X}

then evs does not contain

Says A B {|Y, X|}.

It is interesting to observe that this lemma cannot be proved by induction as
it stands. A variant can be proved, where the main assumption is replaced
by

Number T ∈ parts{X} and (CT evs) ≤ T

Lemma 9.3.2 is a particular case of this variant, which can be proved by
induction, then simplification and finally the force prover. Observe that the
result applies to both steps 2 and 4, X being a concatenated message only
in the latter case. We have also investigated whether the conclusion could be
strengthened as Says A B X. A failed proof attempt indicated that the Spy
could replace a ticket, while it is in the network, with a past timestamp. An
uncompromised receiver would merely forward it as the first component of
the third or the fifth message, and thus falsify the putative conclusion. By
contrast, we verified that the stronger lemma would hold for Kerberos IV
thanks exactly to the use of double encryption, which protects the tickets, if
B’s refresh of the timestamp sent in the last step is modelled.

Going back to the proof of Theorem 9.3.3, the application of Lemma 9.3.2
produces with event 9.2 the contradiction that can solve the subgoal in Fig-
ure 9.3.

9.3.3 Novel Guarantees

The novel proof methods presented in the previous section rely on time-
stamps. We have seen that an uncompromised agent always picks the right
timestamp to insert into the message he is creating. That timestamp is the
current time of the trace, not an earlier (or a later) time; hence, it is fresh.

9.3 Verifying Kerberos V 149

On the basis of these novel considerations, we argue that a unicity guarantee
must hold for each event that sees an uncompromised agent send a message
containing a timestamp just chosen. We have developed new guarantees to
support this argument. Fragments of the relevant proof script can be found
in Appendix B.2.

For example, a unicity guarantee of the original form holds for the first
authenticator (Theorem 9.3.4), which is sent in the first step of the protocol.

Theorem 9.3.4 (KV unique timestamp authenticator1). If A is un-
compromised and evs contains

Says A Kas {|Agent A,Agent Tgs,Number T1 |}

and

Says A Kas′ {|Agent A,AgentTgs′,Number T1 |}

then

Kas = Kas′ and Tgs = Tgs′.

Technically speaking it would have been sufficient to merely assume A not to
be the Spy. The proof is a simple induction followed by Isabelle’s combined use
of simplification and classical reasoning, the auto method. Only one subgoal,
corresponding to the first step of the protocol, survives. It can be solved by
an invocation to Lemma 9.3.2 through the blast method.

As can be expected, analogous guarantees hold for the second authen-
ticator (KV unique timestamp authenticator2, omitted here) and for the
third (KV unique timestamp authenticator3, omitted here), which are re-
spectively addressed to Tgs and to the required service B.

The same proof methods apply to the messages issued by Kas or Tgs,
in which the two Servers, which are assumed to operate reliably, insert fresh
timestamps. Precisely, Kas never uses the same timestamp within two distinct
message contexts (Theorem 9.3.5).

Theorem 9.3.5 (KV unique timestamp authTicket). If evs contains

Says Kas A {|X, Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,

Number Ta|}|}

and

Says Kas A′ {|X ′,Crypt(shrK Tgs′){|AgentA′,AgentTgs′,Key authK ′,

Number Ta|}|}

then

A = A′ and X = X and Tgs = Tgs′ and authK = authK ′.

150 9. Verifying Another Deployed Protocol

An analogous guarantee (KV unique timestamp servTicket, omitted here)
holds for the message that Tgs issues. Both theorems invoke Lemma 9.3.2
although the second parts of the messages that Kas or Tgs send are not
authenticators. The assumptions of the lemma in fact become available during
their proofs. For example, let us consider the proof of Theorem 9.3.5. After
induction, a single invocation of the auto method enriched with Lemma 9.3.2
as a simplification rule terminates the proof. Alternatively, to inspect the
proof more closely, we may take the following analytic steps after induction.

– Simplify all subgoals through method simp all. It terminates all subgoals
except the one concerning step 2, which is non-trivial.

– Simplify the subgoal appealing to Lemma 9.3.2 through method simp add

followed by the name of the lemma. It simplifies away a few contradictory
cases from the conclusion.

– Clarify the subgoal through method clarify. It performs all obvious rea-
soning steps without splitting the goal into multiple parts. The resulting
subgoal can be seen in Figure 9.5.

– Another application of Lemma 9.3.2 contradicts the Says Kas A′ . . . ∈
set evs2 assumption because the second component of the message is a
ciphertext containing exactly the timestamp CT evs2 . The proof termi-
nates.

[[evs2 ∈ kerbV; Key AK /∈ used evs2; AK ∈ symKeys;
Says A’ Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs2;
Says Kas A’
{|X’, Crypt (srhK Tgs’)

{|Agent A’, Agent Tgs’, Key AK’, Number (CT evs2)|}|}
∈ set evs2;
Says Kas A
{|Crypt (shrK A) {|Key AK, Agent Tgs, Number (CT evs2)|},
Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key AK, Number (CT evs2)|}|}

/∈ set evs2]]
=⇒ A = A’ ∧

Crypt (shrK A) {|Key AK, Agent Tgs, Number (CT evs2)|} = X’ ∧
Tgs = Tgs’ ∧ AK = AK’

Fig. 9.5. Proving a novel unicity property for Kerberos V

Moreover, it can be observed that the two Servers in fact insert two occur-
rences (rather than just one) of a fresh timestamp in each of their messages.
Therefore, appropriate unicity guarantees can be proved using the first oc-
currence as a pivot. We only present the guarantee for Tgs (Theorem 9.3.6),
while an analogous one (KV unique timestamp msg2, omitted here) holds
for Kas.

Theorem 9.3.6 (KV unique timestamp msg4). If evs contains

9.3 Verifying Kerberos V 151

Says Tgs A {|Crypt(shrK A){|Key servK ,AgentB,Number Ts|},
servTicket |}

and

Says Tgs A′ {|Crypt(shrK A′){|Key servK ′,Agent B′,Number Ts|},
servTicket ′|}

then

A = A′ and servK = servK ′ and B = B′ and
servTicket = servTicket ′.

Also for these theorems the proof method is substantially unvaried. However,
they require inspection of the first component of the message that is sent, and
hence cannot appeal to Lemma 9.3.2, which inspects the second component.
However, it is easy to prove a similar lemma for the generic message sent by
either of the two Servers (Lemma 9.3.3).

Lemma 9.3.3 (KV Servers never says current timestamp). If evs
and X are such that

Number(CT evs) ∈ parts{X}

then evs does not contain

Says Kas A X or Says Tgs A X.

The theorems presented here are only of technical relevance. They also
express a form of reliability of the protocol model; in fact, similar forms are
expected to hold for Kerberos IV and for any protocol that requires an agent
to insert the current time as a timestamp. Also, they can be reformulated in
terms of the Unique predicate to convey more stringent guarantees.

Another technical observation is that, while we have formally proved that
an uncompromised agent does not send the same timestamp more than once
in a trace, there is nothing to prevent him from sending the same timestamp
on two different traces of the same length. This is to be ascribed to our
formalisation of the current time of a trace as the length of the trace. The
same remark applies to fresh nonces or session keys, which are guaranteed to
be issued only once in a trace.

It was thanks to the novel design of Kerberos V, which required the inves-
tigation of novel proof methods, that we could conceive the new guarantees.
Their formal statements were not obvious to design, but their proofs turned
out to be reasonably easy.

10. Modelling Smartcards

The Inductive Method is tailored to the analysis of protocols that make
use of smartcards. The threat model is extended by giving the Spy the
ability to clone other agents’ cards and exploit their computational
resources.

The protection of long-term secrets was the main reason for the introduction
of smartcards. Although several researchers believe that no smartcard can be
completely tamper resistant, modern cards offer a high level of physical se-
curity. A cheap integrated-circuit memory card may store a few kilobytes and
provide a strong shell for important information. Additionally, an integrated-
circuit microprocessor card embeds an up to 32-bit (or 64-bit RISC) micro-
processor. It can perform relatively simple operations such as DES or RSA
encryption/decryption with relatively long keys. Consequently, existing secu-
rity protocols have been extended with smartcards [95] and new ones have
been designed relying on these inexpensive devices [148]. We refer to the pro-
tocols that are based on smartcards as smartcard protocols, as opposed to the
traditional protocols, which are not.

The modern operating systems of microprocessor cards allow the execu-
tion of user-chosen Java programs, cutting the costs of applications such as
pay TV, mobile or public phones and credit cards. It is difficult to estimate
the number of cards that exist worldwide. Each mobile phone contains one.
VISA estimated as 42 million the total number of Visa Corporation branded
smartcards in 2001 [162]. It is certain that not only the actual cards but also
the smartcard readers have become inexpensive pieces of hardware for home
computers running smartcard middleware.

Smartcards should strengthen the goals of the protocols that use them,
and there exists an increasing demand for formal guarantees that this target
is indeed reached. Two are the most significant attempts to establish such
guarantees. Abadi et al. [3] pioneer the use of smartcards to establish mutual
authentication between agents and workstations. Their treatment develops
around the different functionalities of the adopted smartcards, while facing
the limited technology of the time, and is based on a belief logic that is a
simple extension of the BAN logic (§2.1.2). The calculus of the logic is used
to prove the mutual authentication and delegation goals of three protocols
that impose different requirements on the cards. Confidentiality issues are not

154 10. Modelling Smartcards

considered, as is common with belief logics. Shoup and Rubin [148] design
a protocol based on smartcards and analyse it using a complexity-theoretic
method based on provable security (§2.1.4).

Motivated by the insufficient research done in the field, we extend the
Inductive Method towards the verification of smartcard protocols [26]. The
model cards, which are associated with a new type of the formal language,
can interact with their respective owners by receiving and sending messages.
Each card stores a basic set of long-term secrets, which may depend on the
specific protocol. For example, while a card for key distribution protocols has
only to store specific keys, a card for e-commerce protocols may also have to
store a number representing the owner’s balance. The cards are not forced to
perform any computations and may skip some or repeat others. The Spy has
stolen an unspecified set of cards but must discover their pins, if they are PIN
operated, to be able to use them. Furthermore, she has cloned another set
of cards, discovering their internal secrets. So, since the Spy can act illegally,
there is a set of cards that she can use even if they do not belong to her,
while all other agents can only use their own card.

Several smartcard protocols make the assumption of secure means, sig-
nifying that the Spy cannot interpose between agents and their cards. So,
messages can be exchanged in the clear and each agent’s knowledge of long-
term secrets reduces to nothing. We account for both this and the opposite
alternative by simple variations to the definition of Spy’s knowledge. Often
in the following text, secure means will abbreviate that the assumption of
secure means holds; insecure means will abbreviate that the assumption does
not hold.

This chapter begins with a formalisation of smartcards within the In-
ductive Method (§10.1). Then, it presents the extensions necessary to the
datatype of events (§10.2) and to the definition of agents’ knowledge (§10.3).
The Spy’s illegal behaviour now exploits certain smartcards that she does not
legally own (§10.4), while the protocol model may require some extensions
to account for this (§10.5). This extended approach will be demonstrated in
the next chapter.

10.1 Smartcards

The treatment presented in this chapter is derived from files EventSC.thy and
Smartcard.thy (Figure 3.1). They respectively contain the events necessary
to model a smartcard protocol and a specification of smartcards [33, 34].

To represent the operational aspects of smartcards, a new free type card
is introduced with several associated functions. A bijective correspondence

Card : agent −→ card

is stated between agents and smartcards, formally ruling out the chance that
an agent owns more than one card. This is a choice of simplicity. Should that

10.1 Smartcards 155

chance become reality, the single model card could be imagined to incorporate
all computational resources. Alternatively, the same function can map an
agent into a set of cards.

In the real world, the card CPUs only provide certain, limited resources: a
card will produce a specific output only if fed the correct input. For example,
if a card can compute a session key K from an input X, the card must
necessarily be fed X in order to obtain K. The formal protocol model can
easily account for this. It will allow for the outputs encompassed by the
protocol only under the condition that the cards are fed the corresponding,
specific inputs. It will not construct other outputs, even from cloned cards
(§10.1.1). In consequence, there exists no card whose use can give the Spy
unlimited power.

10.1.1 Card Vulnerabilities

The model cards suffer from a number of realistic vulnerabilities due to theft,
cloning and internal failures.

Theft. The small dimensions of the smartcards confer their portability but
also raise the risk of loss or theft. In the worst case, all smartcards that have
been lost by their owners or stolen from them will end up in the Spy’s hands.
These cards, which can no longer be used by their owners, are modelled by
the set stolen, such that stolen ⊆ card.

Cloning. The Spy is not necessarily able to use a stolen card actively, unless
she knows its PIN. Nevertheless, she could be able to use modern techniques
(such as microprobing [15]), break the physical security of the card, access its
EEPROM (namely Electrically Erasable Programmable Read-Only Memory)
where the long-term secrets are stored and, in the worst case, reverse engineer
the whole card chip. At this stage, the Spy would be able to build a clone of
the card for her own use. If this process succeeds, the card belongs to the set
cloned in the model, and cloned ⊆ card.

Cloning without apparent theft. All cloning techniques that are cur-
rently known are invasive, in the sense that they spoil the original card. The
chip of the card must be disembedded from its frame by suitable chemicals,
and its layout often modified using laser cutter microscopes. These alterations
are irreversible. However, the Spy might steal a card, build two clones of it
and return one to the card owner, who would not suspect anything. Alter-
natively, the Spy might even be able to tailor non-invasive techniques (such
as fault generation [103, 113] by exploiting the power and clock supply lines)
to cloning in the near future, and return the original card to its owner after
building a clone for herself. Modelling these opportunities simply requires
stating no relation between the sets stolen and cloned, so that a card could
be cloned and not be stolen. Such a card could be used both by its legal
owner and by the Spy, granting them identical computational resources.

156 10. Modelling Smartcards

Data bus failure. All card data buses are corrupted so that the travel-
ling messages can be either forgotten, for example due to electronic decay,
permuted or fed to the CPU repeatedly, for example due to simple layout
modifications. Allowing message alteration or leakage at this level would give
the Spy excessive, unrealistic power: many protocols explicitly rely on se-
cure means between agents and smartcards. Therefore, a smartcard can omit
some computations or repeat others. In the worst case, the Spy has caused
all cards to deteriorate in this fashion before they are delivered to their re-
spective owners, leaving no visible trace of tampering. This is easy to model
inductively: events only occur by firing of inductive rules in the formal pro-
tocol model, but rules are not forced to fire even when their preconditions
are met. Also, rules may fire in any order or fire more than once, provided
that their preconditions are met: each of these possibilities is recorded by a
specific trace.

Global internal failure. Smartcards may suffer unexpected failures and
abruptly stop working at any point. A trace of the formal protocol model
easily reflects each scenario of global internal failure. Some events mentioning
the card can be identified in the trace. These events terminate at some stage,
namely there exists an event mentioning the card such that the continuation
of the trace does not feature the card any more. It reflects the permanent
exclusion of the card from the protocol during the very history that the trace
models.

10.1.2 Card Usability

Agents other than the Spy only conduct legal operations, while the Spy can
act both legally and illegally. A card that has not been stolen can be used by
its owner, namely it can be used legally. The Spy cannot handle an unstolen
card unless it is her own.

Definition 10.1.1. legalUse(Card A) , Card A 6∈ stolen.

When the assumption of secure means does not hold, the Spy can listen in
between any agent and his smartcard; so, she has electronic access to those
cards of which she knows the pins (if a smartcard is PIN operated, then it
accepts no communication unless it is activated by means of its PIN). Pins
are sent between agents and cards (never between agents), so the Spy might
learn some of them on certain traces. By contrast, should the cards not be
PIN operated, they would all be illegally usable.

Definition 10.1.2. Let the assumption of secure means not hold;

illegalUse(Card A) on evs ,

the Spy knows A’s PIN on evs

if cards are PIN operated

true

if cards are not PIN operated

10.1 Smartcards 157

The informal predicate the Spy knows A’s PIN on evs will be refined below
by the formal definition of agents’ knowledge (§10.3).

When the assumption of secure means holds, the Spy needs to gain phys-
ical access to the cards in addition to the knowledge of their pins. Since she
cannot monitor the events involving the smartcards, she has no chance of dis-
covering any pins via any events. She can only know them initially (§10.3),
so the definition of illegal usability does not depend in the trace. If the cards
are not PIN operated, we only need to characterise the physical access to the
card.

Definition 10.1.3. Let the assumption of secure means hold;

illegalUse(Card A) ,

Card A ∈ cloned or (Card A ∈ stolen and
the Spy knows A’s PIN)

if cards are PIN operated

Card A ∈ cloned or Card A ∈ stolen

if cards are not PIN operated

Also the informal predicate the Spy knows A’s PIN will be refined below.
The Spy must be able to use her own card legally because she must be

given the opportunity to act legally. However, she does not need to use her
card illegally because she cannot acquire additional knowledge from doing so.
It can be assumed that

Card Spy 6∈ stolen ∪ cloned

The same is assumed of the card that belongs to the Server.
It must be stressed that, since certain cards may be cloned and at the

same time not be stolen, there may exist cards that are both legally and
illegally usable. Every agent is able to verify whether or not his own card is
stolen by checking whether or not he holds it. All other assumptions about
the agent’s card or the agent’s peer’s card now belong to the minimal trust
(Chapter 5).

10.1.3 Card Secrets

A smartcard typically contains two long-term symmetric keys: the PIN to ac-
tivate its functionalities and the card key. As can be seen in file Smartcard.thy

(Figure 3.1), we declare two corresponding functions

PIN : agent −→ key

crdK : card −→ key

The first of the two functions can be equivalently defined on cards rather
than on agents. The card key serves to limit the data that must be stored in
the card RAM. Suppose that when the card is required to issue a fresh nonce

158 10. Modelling Smartcards

it also outputs the nonce encrypted under its key. This cipher may be used
later to assess the nonce authenticity to the card, even if the card did not
store the nonce, assuming that the card key is secure.

In the case of key distribution protocols, each card also stores its owner’s
long-term key, which is not known to the agent, in contrast with traditional
protocols. We keep the original definition (§3.4)

shrK : agent −→ key

Observe that, since the model is operational, the notion that the smart-
cards store some secrets does not need to be formalised explicitly. We only
need to define how these secrets are used, namely in which circumstances
and to whom they will become known. This increases the flexibility of the
specification method. If the smartcards store additional secrets in certain ap-
plications, once such secrets are formalised by suitable functions, only the
definition of agents’ knowledge must be updated.

We assume that collision of keys is impossible, so all functions declared
above are injective and their ranges are disjoint.

10.2 Events

The treatment presented here comes with the file EventSC.thy (Figure 3.1),
which formalises the events for smartcard protocols. The theory is built on the
standard Message.thy theory file; hence, it branches the theory hierarchy in
parallel with file Event.thy, which contains the events for standard protocols
(§8.2).

We introduce seven events for smartcard protocols that do not make the
assumption of secure means. Conversely, two of them should be pruned over
secure means, although we will retain them all in practice and merely require
the protocol model to only use the right subset. The Isabelle datatype of
events is upgraded as

datatype event , Says agent agent msg

Notes agent msg

Gets agent msg

Inputs agent cardmsg

Gets c cardmsg

Outputs card agent msg

Gets a agent msg

The known network events (sending, noting and receiving a message, §8.2)
have been extended with the new card events. Agents may send inputs to the
cards (Inputs) and the cards may receive them (Gets c); similarly, the cards
may send outputs to the agents (Outputs) and the agents may receive them

10.3 Agents’ Knowledge 159

(Gets a). An agent can distinguish the messages received from the network
from those received from his smartcard reader because they arrive on separate
ports; so we provide two different events. However, in both cases the messages
could have been forged by the Spy.

Extending the reception invariant (§8.2), the protocol model allows the
cards to receive by a Gets c event only the messages that have been sent by
an Inputs event, and allows the agents to receive by a Gets a event only the
messages that have been sent by an Outputs event (§10.5).

When the assumption of secure means holds, the events Gets c and Gets a
can be omitted: a card certainly receives its owner’s inputs, and an agent
certainly receives his card outputs. Consequently, a smartcard C can verify
whether an event Inputs A C X occurred and an agent A can verify whether
an event Outputs C AX occurred, while this is impossible on insecure means.

The formal definition of the function used (§§3.10 and 8.2) must be en-
riched with four rules to account for the new events.

4. All components of a message that an agent sends as input to a smartcard
in a trace are used on that trace.

used((Inputs A C X) # evs) , parts{X} ∪ used evs

5. All messages that a smartcard receives as inputs from an agent in a trace
do not directly extend those that are used on that trace.

used((Gets c C X) # evs) , used evs

6. All components of a message that a smartcard sends as output to an
agent in a trace are used on that trace.

used((Outputs C AX) # evs) , parts{X} ∪ used evs

7. All messages that an agent receives as outputs from a smartcard in a
trace do not directly extend those that are used on that trace.

used((Gets aA X) # evs) , used evs

Cases 5 and 7 do not extend the set of used components because the cor-
responding events pertain to messages already considered by means of the
reception invariant. If the assumption of secure means holds, both cases are
omitted.

10.3 Agents’ Knowledge

The function initState formalising the agents’ initial knowledge (§3.9) must
be redefined to account for the secrets stored in the smartcards. We quote
here a fairly general definition for smartcard protocols relying on the original
datatype of agents (§3.3) and with PIN operated cards. Asymmetric long-
term keys are omitted for brevity, while the 8 symbol as usual indicates the
image operator.

160 10. Modelling Smartcards

1. The Server’s initial knowledge consists of all long-term secrets.

initState Server , (Key8 range PIN)∪
(Key8 range crdK) ∪ (Key8 range shrK)

2. Each friendly agent’s initial knowledge consists of his own PIN.

initState (Friend i) , {Key (PIN (Friend i))}

3. The Spy’s initial knowledge consists of the compromised agents’ secrets
and of the secrets stored in the cloned cards (even if some cards store the
secrets in a blinded form, the Spy discovers them in the worst case).

initState Spy , (Key8 PIN8 bad) ∪ (Key8 PIN8{A.Card A ∈ cloned})∪
(Key8 crdK8 cloned)∪
(Key8 shrK8{A.Card A ∈ cloned})

Observe that this definition is not influenced by the assumption of secure
means because it formalises the situation before any protocol sessions have
taken place. The opposite applies to the knowledge that agents can extract
from traces, which we define by the function knows (§8.2.1). For simplicity,
we present here only the most interesting case, which occurs when the as-
sumption of secure means does not hold. However, its definition, as is released
in file EventSC.thy, can be found in Appendix C.2 along with a few technical
lemmas. It is parametric over the flag secureM, whose truth value a protocol
model merely has to state.

4. An agent knows what he inputs to any card in a trace; in particular, the
Spy also knows all messages ever input on it.

knows A ((Inputs A′ C X) # evs) ,{
{X} ∪ knows A evs if A = A′ or A = Spy

knows A evs otherwise

5. No agent, including the Spy, can extend his knowledge with any of the
messages received by any smartcard in a trace. The Spy and the message
originators already know them by case 4 thanks to the reception invariant.

knows A ((Gets c A′ X) # evs) , knows A evs

6. An agent knows no card outputs in a trace, as the means is insecure; the
Spy knows all of them, as she controls the means.

knows A ((Outputs C A′ X) # evs) ,{
{X} ∪ knows A evs if A = Spy

knows A evs otherwise

7. An agent other than the Spy knows what he receives from his card in a
trace. The Spy knows all messages received by any smartcard by case 6,
due to the reception invariant.

10.3 Agents’ Knowledge 161

knows A ((Gets aA′ X) # evs) ,{
{X} ∪ knows A evs if A = A′ and A is not the Spy

knows A evs otherwise

At this stage, definition 10.1.2 can be refined. Recall that the function
analz extracts all message components from a set of messages using keys that
are recursively available (§3.10).

Definition 10.1.2′. Let the assumption of secure means not hold;

illegalUse(Card A) on evs ,

Key (PIN A) ∈ analz(knows Spy evs)

if cards are PIN operated

true

if cards are not PIN operated

In particular, a cloned card or a card whose owner is compromised is illegally
usable on any trace (by definition of initState, base case of knows and defini-
tion of analz). As expected, the illegal usability of a card over insecure means
does not necessarily imply the Spy’s physical access to the card.

If the assumption of secure means holds, the definition of knows simpli-
fies. The base case and those corresponding to the network events remain
unchanged. Cases (5) and (7) must be pruned, for the corresponding events
are no longer defined. If an agent sends an input to his card, or the card
sends him back an output, both messages are certainly received because the
Spy cannot listen in. Hence, cases (4) and (6) must be amended accordingly.

4′. An agent, including the Spy, knows what he inputs to any card in a trace.

knows A ((Inputs A′ C X) # evs) ,{
{X} ∪ knows A evs if A = A′

knows A evs otherwise

6′. An agent, including the Spy, knows what he is output from any card in
a trace.

knows A ((Outputs C A′ X) # evs) ,{
{X} ∪ knows A evs if A = A′

knows A evs otherwise

As was desired, these cases forbid the Spy from learning anything from the
card events. Therefore, she knows a PIN if and only if she knows it initially.
By definition of initState and base case of knows, definition 10.1.3 can be
refined as follows.

Definition 10.1.3′. Let the assumption of secure means hold;

162 10. Modelling Smartcards

illegalUse(Card A) ,

Card A ∈ cloned or (Card A ∈ stolen and A ∈ bad)

if cards are PIN operated

Card A ∈ cloned or Card A ∈ stolen

if cards are not PIN operated

This definition insists on the Spy’s physical access to the illegally usable cards
over secure means. Only when the cards are not PIN operated over secure
means does it hold that if a card is not illegally usable, then it is legally
usable. This does not hold in general, nor does the converse.

The function knows can be extended to smartcards, but a detailed rea-
soning about card knowledge may seem exaggerated at present due to their
limited RAM. However, the next chapter at times advances some considera-
tions in this direction.

10.4 Threat Model

We have seen above (Chapters 3, 6 and 7) that the threat model for traditional
protocols is typically specified by the single inductive rule Fake extending the
protocol model.

In modelling smartcard protocols, the Spy must be allowed to exploit the
illegally usable smartcards. If the assumption of secure means does not hold,
not only can the Spy send fake messages as inputs to the illegally usable
cards, but she can also send fake outputs to any agents, pretending that her
own card could produce them. This is done in addition to sending the fake
messages on the network because receiving the same message from the card
reader or from the network may induce different reactions in an agent. The
Fake rule must be amended as outlined in Figure 10.1. Observe the condition
of illegal usability over insecure means stated on A’s card.

Fake :
[[evsF ∈ smart p insecure m; illegalUse(Card A) on evs;

X ∈ synth (analz (knows Spy evsF))]]
=⇒ Says Spy B X # Inputs Spy (Card A) X # Outputs (Card Spy) C X

evsF ∈ smart p insecure m

Fig. 10.1. Rule template for Spy’s illegal behaviour in the case of insecure means

If the assumption of secure means holds, then the Spy cannot send fake
card outputs to the agents. Figure 10.2 presents the corresponding, new Fake
rule. Observe the condition of illegal usability over secure means stated on
A’s card.

In this scenario, by definition of knows, the Spy gains no knowledge from
the card events that do not concern her. Therefore, we must assure that an

10.5 Protocol Model 163

Fake :
[[evsF ∈ smart p secure m; illegalUse(Card A);

X ∈ synth (analz (knows Spy evsF))]]
=⇒ Says Spy B X # Inputs Spy (Card A) X

evsF ∈ smart p secure m

Fig. 10.2. Rule template for Spy’s illegal behaviour in the case of secure means

illegally usable card outputs towards the Spy rather than towards its owner.
This is realistic because, over insecure means, the illegally usable cards lie in
the Spy’s hands. Suppose that A’s card outputs X ′ when it is fed X. The
formal protocol model will contain rule Name (Figure 10.3), which requires
the card to be legally usable. Hence, rule Name Fake must be added to allow
A’s card to output X ′ towards the Spy in case the card is illegally usable
and was input X by the Spy. The Spy learns X ′ from the firing of the latter
rule, not of the former. Any extra assumptions in Name must be kept in
Name Fake. Should A’s card be both legally and illegally usable, both rules
would be enabled to fire. Rule Name Fake is unnecessary over insecure means,
where the Spy monitors all card events.

Name :
[[evsN ∈ smart p secure m; legalUse(Card A);

Inputs A (Card A) X ∈ set evsN]]
=⇒ Outputs (Card A) A X’ # evsN ∈ smart p secure m

Name Fake :
[[evsNF ∈ smart p secure m; illegalUse(Card A);

Inputs Spy (Card A) X ∈ set evsNF]]
=⇒ Outputs (Card A) Spy X’ # evsNF ∈ smart p secure m

Fig. 10.3. Rule templates for each card output in the case of secure means

10.5 Protocol Model

The formal model for a smartcard protocol requires additional features if the
assumption of secure means does not hold.

The smartcards must be allowed to receive the inputs that they were sent
from agents and, likewise, agents must be allowed to receive the outputs sent
from cards. For the respective purposes, we introduce in Figure 10.4 rules
Reception c and Reception a, which are inspired by the Reception rule for
messages sent over the network (§8.2.2). Since the rules are not forced to fire,

164 10. Modelling Smartcards

Reception c :
[[evsRc ∈ smart p insecure m; Inputs A (Card B) X ∈ set evsRc]]
=⇒ Gets c (Card B) X # evsRc ∈ smart p insecure m

Reception a :
[[evsRa ∈ smart p insecure m; Outputs (Card A) B X ∈ set evsRa]]
=⇒ Gets a B X # evsRa ∈ smart p insecure m

Fig. 10.4. Rule templates for message reception in the case of insecure means

no kind of reception (either from the network or from the agent-smartcard
means) is guaranteed, as is the case in a world where the Spy controls all
means.

If the assumption of secure means holds, then reception over the agent-
smartcard means is guaranteed, so the rules in Figure 10.4 are not needed.

11. Verifying a Smartcard Protocol

The Shoup-Rubin protocol, which adopts smartcards, is analysed for-
mally. Two weaknesses due to lack of explicitness are unveiled, which
affect availability to the peers of the goals of confidentiality, authen-
tication and key distribution in our threat model.

Shoup and Rubin [148] study an existing session key distribution protocol
due to Leighton and Micali [104] and prove it secure [48] using the Bellare
and Rogaway’s framework (2.1.4). Then, they develop a new protocol, based
on the design by Leighton and Micali, for session key distribution in a three-
agent setting where each agent is endowed with a smartcard that can compute
a few pseudorandom functions. Finally, they extend Bellare and Rogaway’s
framework accounting for smartcards, and argue that the new protocol enjoys
two fundamental properties. One states that a pair of agents running the
protocol share the same session key at the end of a protocol session in which
the Spy does not prevent the delivery of the relevant messages. There is no
formal proof for this property although it may not be obvious especially if one
is unfamiliar with the formalism. The other one confirms by mathematical
proof that the adversary has a negligible advantage, signifying that the session
key remains confidential. The reasoning is done without mechanised support.

We have applied the extended Inductive Method described in the previ-
ous chapter to the Shoup-Rubin protocol and verified its goals of authen-
ticity, unicity, confidentiality, authentication and key distribution [28]. We
have discovered that the confidentiality theorems that hold for the protocol
model cannot be applied by the peers, so the protocol lacks goal availability
(Chapter 5). This is due to the lack of explicitness in two crucial protocol
steps. Inspecting the corresponding proofs suggests a simple fix, which can
be verified to be effective. To our knowledge, this work represents the first
mechanised proof of correctness of a full protocol based on smartcards.

This chapter presents the Shoup-Rubin protocol (§11.1), its modelling
(§11.2) and its verification (§11.3). Finally, the verification is extended on an
updated version of the protocol (§11.4) that achieves stronger goals.

166 11. Verifying a Smartcard Protocol

11.1 The Shoup-Rubin Protocol

An abstract version of the protocol, obtained from both the designers and the
implementors’ papers, is presented in this section. An agent P ’s long-term
key (shared with the Server) is denoted by Kp, P ’s smartcard by Cp and P ’s
smartcard long-term key by KCp .

The protocol relies on the concept of pairkey (due to Leighton and Mi-
cali [104]) to establish a long-term secret between the smartcards of a pair
of agents. The pairkey is historically associated with the pair of agents: the
one for agents A and B is Πab = {|A|}Kb ⊕ {|B|}Ka , where ⊕ is the bit-
wise exclusive-or operator. While A’s card can compute {|B|}Ka and then
πab = {|A|}Kb from Πab , B’s card can compute πab directly. Hence, the two
cards share the long-term secret πab , which we call pair-k for A and B.

I : 1. A → S : A, B

2. S → A : Πab , {|Πab , B|}Ka

II : 3. A → Ca : A

4. Ca → A : Na, {|Na|}KCa

III : 5. A → B : A,Na

IV : 6. B → Cb : A,Na

7. Cb → B : Nb,Kab, {|Na,Nb|}πab
, {|Nb|}πab

V : 8. B → A : Nb, {|Na,Nb|}πab

VI : 9. A → Ca : B,Na,Nb, Πab ,
{|Πab , B|}Ka , {|Na,Nb|}πab

, {|Na|}KCa

10. Ca → A : Kab, {|Nb|}πab

VII : 11. A → B : {|Nb|}πab

Fig. 11.1. Shoup-Rubin protocol

The full protocol (Figure 11.1) develops through seven phases. The odd-
numbered ones take place over the network, while the even-numbered ones
cover the communication between agents and smartcards.

Phase I. An initiator A tells the trusted Server that she wants to initiate a
session with a responder B, and receives in return the pairkey Πab and
its certificate encrypted under her long-term key.

Phase II. A queries her card and receives a fresh nonce and its certificate
encrypted under the card long-term key. The form of A’s query is specified

11.2 Modelling Shoup-Rubin 167

neither by the designers nor by the implementors, so our choice of message
3 is arbitrary.

Phase III. A contacts B, sending him her identity and her nonce Na.
Phase IV. B queries his card with the data received from A, and obtains a

new nonce Nb, the session key Kab, a certificate for Na and Nb, and a
certificate for Nb; Kab is constructed as a function of Nb and πab .

Phase V. B forwards his nonce Nb and the certificate for Na and Nb to A.
Phase VI. A feeds her card B’s name, the two nonces (she has just received

Nb), the pairkey and its certificate, and the two certificates for the nonces;
A’s card computes πab from Πab and uses it with the nonce Nb to com-
pute the session key Kab; the card outputs Kab and the certificate for
Nb, which is encrypted under πab .

Phase VII. A forwards the certificate for Nb to B.

The protocol makes the assumption of secure means, so that the Spy
cannot listen in between agents and their respective cards. The cards output
the session keys in the clear. Although this feature may seem unrealistic to
use on a vast scale, in a sense it adds robustness to a protocol by reducing
each agent’s knowledge to the PIN to activate his card. The current version
of Shoup-Rubin in fact employs smartcards that are not PIN operated so no
agent knows any long-term secrets. (The published papers never state this
explicitly but Peter Honeyman, one of the implementors, kindly clarified it
during a private conversation).

Nevertheless, other features may seem incautious. For example, the pro-
tocol reveals A’s nonce to the Spy in step 5, and B’s in step 8. An informal
account of the consequences can be hardly given. We formally verify that,
even if the session key is computed out of B’s nonce, the knowledge of this
nonce does not help the Spy discover the session key as long as she cannot
use A and B’s cards.

11.2 Modelling Shoup-Rubin

The protocol never uses a pairkey as a cryptographic key but merely as a
means to establish the corresponding pair-k. Moreover, a pairkey remains
secret as long as the Spy does not observe or compute it. Therefore, our
model treats pairkeys as nonces, formalising them by the function

Pairkey : agent ∗ agent −→ nat

This produces a natural number to be used with message constructor Nonce.
By contrast, a pair-k is used as a proper cryptographic key, and a session
key is in turn constructed from a nonce and a pair-k. They are formalised
respectively as

pairK : agent ∗ agent −→ key

sesK : nat ∗ key −→ key

168 11. Verifying a Smartcard Protocol

At the operational level, we do not need to explore the implementation de-
tails beyond these components; we are interested in their abstract properties.
The function Pairkey cannot be declared collision-free because it represents
an application of the exclusive-or operator. As expected, this will influence
the corresponding confidentiality argument. Assuming that collision of keys
is impossible, the other two functions are declared as collision-free, and their
ranges as disjoint. Also, they are respectively disjoint from the ranges of the
functions formalising other long-term keys (§10.1.3), so that any pair-k differs
from a card key and so forth.

The actual definition of initState must specify the general definition seen
above (§10.3) to reflect the extra secrets involved in this protocol. Smartcards
are not PIN operated here, so all occurrences of the function PIN are omitted
from this presentation. The full implementation of initState, which comes
with the file Smartcard.thy (Figure 3.1), can be found in Appendix C.1 along
with a few technical lemmas.

1. The Server’s initial knowledge must also comprise all pairkeys and all
pair-k’s.

initState Server , (Key8 range crdK) ∪ (Key8 range shrK)∪
(Key8 range pairK) ∪ (Nonce8 range Pairkey)

2. The friendly agents’ initial knowledge is empty, so they are not able to
reveal any secrets to the Spy.

initState (Friend i) , {}

3. Recall the definitions of pairkey and pair-k from the previous section. The
Spy’s initial knowledge must be extended on the pair-k for a pair of agents
if the card of the second agent is cloned, because the Spy knows that
agent’s shared key. A pairkey must be included if both the corresponding
cards are cloned.

initState Spy , (Key8 crdK8 cloned)∪
(Key8 shrK8{A.Card A ∈ cloned})∪
(Key8 pairK8{(X, B).Card B ∈ cloned})∪
(Key8 Pairkey8{(A,B).Card A ∈ cloned and

Card B ∈ cloned})

The formalisations of smartcards, events and the Spy are inherited from
the general treatment presented in the previous chapter. However, the Server
never uses its smartcard in this protocol.

We declare the constant sr as a set of lists of events. It designates the
formal protocol model and is defined in the rest of the section by means of
inductive rules. Since the protocol assumes secure means and the cards are
not PIN operated, definition 10.1.3′ of illegal usability (§10.3) applies; the flag

11.2 Modelling Shoup-Rubin 169

secureM must be set to true, so that the function knows remains appropri-
ately defined. The following presentation is derived from file ShoupRubin.thy

(Figure 3.1).

11.2.1 Basics

The basic rules of a formal protocol model are presented in Figure 11.2. The
empty trace formalises the initial scenario, in which no protocol session has
taken place. Rule Nil as usual sets the base of the induction stating that the
empty trace is admissible in the protocol model. All other rules represent
inductive steps, so they detail how to extend a given trace of the model. In
particular, rule Reception allows messages sent on the network to be received
by their respective intended recipients. Rule Fake is treated later (§11.2.9).

Nil :
[] ∈ sr

Reception :
[[evsR ∈ sr; Says A B X ∈ set evsR]] =⇒ Gets B X # evsR ∈ sr

Fig. 11.2. Inductive model of Shoup-Rubin: basics

11.2.2 Phase I

The rules modelling phase I of the protocol are presented in Figure 11.3. Any
agent except the Server may initiate a protocol session at any time; hence, the
corresponding event may extend any trace of the model (SR1). The model
cannot be so permissive as to dispose with condition that A is not the Server;
otherwise, Theorem 11.3.1 would not hold, as clarified below (§11.3.1).

SR1 :
[[evs1 ∈ sr; A 6= Server]]
=⇒ Says A Server {|Agent A, Agent B|} # evs1 ∈ sr

SR2 :
[[evs2 ∈ sr; Gets Server {|Agent A, Agent B|} ∈ set evs2]]
=⇒ Says Server A {|Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B|}|}
evs2 ∈ sr

Fig. 11.3. Inductive model of Shoup-Rubin: phase I

Having received a message quoting two agent names — initiator and re-
sponder of the session — the Server computes the pairkey for them and sends

170 11. Verifying a Smartcard Protocol

it with a certificate to the initiator (SR2). Although the pairkey is sent in the
clear, it does not reveal its peers. This information is carried by the certificate,
which explicitly creates the association between pairkey and peers.

11.2.3 Phase II

The rules modelling phase II of the protocol are presented in Figure 11.4.
The initiator of a protocol session may query her own smartcard provided
that she received a message containing a nonce and a certificate (SR3).

SR3 :
[[evs3 ∈ sr; legalUse(Card A);

Says A Server {|Agent A, Agent B|} ∈ set evs3;
Gets A {|Nonce Pk, Cert|} ∈ set evs3]]

=⇒ Inputs A (Card A) (Agent A) # evs3 ∈ sr

SR4 :
[[evs4 ∈ sr; legalUse(Card A); Nonce Na 6∈ used evs4; A 6= Server;

Inputs A (Card A) (Agent A) ∈ set evs4]]
=⇒ Outputs (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

evs4 ∈ sr

Fig. 11.4. Inductive model of Shoup-Rubin: phase II

The initiator gets no assurance that the nonce is in fact the pairkey for
her and the intended responder, or that the certificate is specifically for the
pairkey. Since the message traversed the network in the clear, the Spy might
have tampered with it. It would seem sensible that the agent forwarded the
entire message to the smartcard, which would be able to decrypt the certifi-
cate and verify the integrity and authenticity of the pairkey. However, the
protocol specification does not encompass this, so we analyse the protocol
with a simpler input message containing only the initiator’s name. Given the
input, the card issues a fresh nonce and a certificate for it (SR4). The card
keeps no record of the nonce in order to conserve memory. By contrast, it is
the certificate what will subsequently confirm the authenticity of the nonce to
the card. Both steps rest on a legally usable smartcard because they express
some of the legal operations by the card owner. Disposing with condition
that A is not the Server would falsify a lemma that is necessary to prove the
reliability Theorem 11.3.1, presented below (§11.3.1).

11.2.4 Phase III

The rules modelling phase III of the protocol are presented in Figure 11.5.
When the initiator obtains a nonce and a certificate from her smartcard, she
may forward the nonce along with her identity to the intended responder
(SR5).

11.2 Modelling Shoup-Rubin 171

SR5 :
[[evs5 ∈ sr;

Says A Server {|Agent A, Agent B|} ∈ set evs5;
Outputs (Card A) A {|Nonce Na, Cert|} ∈ set evs5;
∀ p q. Cert 6= {|p, q|}]]

=⇒ Says A B {|Agent A, Nonce Na|} # evs5 ∈ sr

Fig. 11.5. Inductive model of Shoup-Rubin: phase III

Later (phase V, §11.2.6), the responder obtains a message of the same
form with a different certificate, and must perform different events. At that
stage, should the responder initiate another protocol session with a third
agent, he will not be able to decide whether to behave according to phase
III or to phase V unless he checks the certificate. If it is a one-component
cipher, then phase III follows; if it is a concatenated message, then phase
V follows. These alternatives may be discerned in practice by the length of
the certificate. However, since they are mutually exclusive, our treatment of
phase III simply requires the certificate not to be a concatenated message.
Both the designers and the implementors of the protocol omit this check, and
thus introduce some ambiguity in the specification. Incidentally, it must be
recalled that, when the certificate is a cipher, no agent can check its internal
structure because its encryption key is only known to a smartcard.

11.2.5 Phase IV

The rules modelling phase IV of the protocol are presented in Figure 11.6.

SR6 :
[[evs6 ∈ sr; legalUse(Card B);

Gets B {|Agent A, Nonce Na|} ∈ set evs6]]
=⇒ Inputs B (Card B) {|Agent A, Nonce Na|} # evs6 ∈ sr

SR7 :
[[evs7 ∈ sr; legalUse(Card B);

Nonce Nb 6∈ used evs7; Key (sesK(Nb,pairK(A,B))) 6∈ used evs7;
Inputs B (Card B) {|Agent A, Nonce Na|} ∈ set evs7]]

=⇒ Outputs (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},
Crypt (pairK(A,B)) (Nonce Nb)|}

evs7 ∈ sr

Fig. 11.6. Inductive model of Shoup-Rubin: phase IV

This phase sees the responder forward a cleartext message received from
the network to his smartcard, provided that the card is legally usable (SR6).
The smartcard issues a fresh nonce, computes the pair-k for initiator and
responder, and uses these components to produce a session key. The nonce

172 11. Verifying a Smartcard Protocol

being fresh, the session key is also fresh. Finally, the card outputs the nonce,
the session key and two certificates (SR7). One certificate establishes the
association between the initiator’s and the responder’s nonce, and will be
inspected by the initiator’s card in phase VI. The other certificate will be
retained by the responder, who will make sure of obtaining it again from the
network in the final phase.

11.2.6 Phase V

The rules modelling phase V of the protocol are presented in Figure 11.7.
When the responder obtains from his card a nonce followed by a key and
two certificates, he prepares for sending the nonce and one certificate to
the initiator (SR8). However, he must recall having previously quoted the
initiator’s identity to the card, trusting the card output to refer to his specific
input. Observe that the three components following the nonce in the card
output might be seen as a unique certificate, thus inviting the ambiguity
discussed above (§11.2.4).

SR8 :
[[evs8 ∈ sr;

Inputs B (Card B) {|Agent A, Nonce Na|} ∈ set evs8;
Outputs (Card B) B {|Nonce Nb, Key K, Cert1, Cert2|} ∈ set evs8]]

=⇒ Says B A {|Nonce Nb, Cert1|} # evs8 ∈ sr

Fig. 11.7. Inductive model of Shoup-Rubin: phase V

11.2.7 Phase VI

The rules modelling phase VI of the protocol are presented in Figure 11.8. The
scenario returns to the initiator. Before she queries her legally usable card,
she verifies she has taken hold of three messages, each containing a nonce and
a certificate. She takes on trust the nonce Pk as the pairkey and Cert1 as its
certificate. She recalls having obtained from her smartcard a nonce Na with a
certificate that is not a concatenated message, which signifies that the nonce
was issued for her when she was acting as initiator. Then, she treats Nb as
the responder’s nonce and Cert3 as a certificate for Na and Nb. Finally, she
feeds these components to her smartcard (SR9). The card checks whether
all the received components have the correct form and, if so, computes the
pair-k from the pairkey and then produces the session key and a certificate
for the responder’s nonce (SR10). The condition that A is not the Server can
be justified as above with rule SR4.

11.2 Modelling Shoup-Rubin 173

SR9 :
[[evs9 ∈ sr; legalUse(Card A);
Gets A {|Nonce Pk, Cert1|} ∈ set evs9;
Outputs (Card A) A {|Nonce Na, Cert2|} ∈ set evs9;
Gets A {|Nonce Nb, Cert3|} ∈ set evs9;
∀ p q. Cert2 6= {|p, q|}]]

=⇒ Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,
Cert1, Cert3, Cert2|}

evs9 ∈ sr

SR10 :
[[evs10 ∈ sr; legalUse(Card A); A 6= Server;
Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb,

Nonce (Pairkey(A,B)),
Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B|},
Crypt (Pairkey(A,B)) {|Nonce Na, Nonce Nb|},
Crypt (crdK (Card A)) (Nonce Na)|} ∈ set evs10]]

=⇒ Outputs (Card A) A {|Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) (Nonce Nb)|}

evs10 ∈ sr

Fig. 11.8. Inductive model of Shoup-Rubin: phase VI

11.2.8 Phase VII

The rules modelling phase VII of the protocol are presented in Figure 11.9.
Upon reception of a cryptographic key and a certificate from her smartcard,
the initiator forwards the certificate to the responder (SR11).

SR11 :
[[evs11 ∈ sr;

Says A Server {|Agent A, Agent B|} ∈ set evs11;
Outputs (Card A) A {|Key K, Cert|} ∈ set evs11]]

=⇒ Says A B (Cert) # evs11 ∈ sr

Fig. 11.9. Inductive model of Shoup-Rubin: phase VII

11.2.9 Threats

In addition to the legal behaviour described above, the Spy may also act ille-
gally. She observes the traffic on each trace, extracts all message components,
and builds all possible fake messages to send on the network or to input to the
illegally usable cards. This is modelled by rule Fake in Figure 11.10 (which
is drawn from Figure 10.2).

We assume that the algorithm that the cards use to compute the session
keys is publicly known. Therefore, should the Spy know the relevant compo-
nents of a session key, she will be able to compute the key. We allow this by

174 11. Verifying a Smartcard Protocol

Fake :
[[evsF ∈ sr; illegalUse(Card A);

X ∈ synth (analz (knows Spy evsF))]]
=⇒ Says Spy B X # Inputs Spy (Card A) X # evsF ∈ sr

Fig. 11.10. Inductive model of Shoup-Rubin: threats on messages

Paulson’s method used on the TLS protocol [134], rather than by extending
the definition of synth, which would complicate the mechanisation process. If
the Spy obtains a nonce and a pair-k, she can note the corresponding session
key by the rule Forge in Figure 11.11, thus acquiring knowledge of it. Since
the pair-k’s are never sent on the network but merely used as encryption
keys, they can only be known initially by definition of initState. This is why
the third premise of the rule does not need to mention analz.

Forge :
[[evsFo ∈ sr; Nonce Nb ∈ analz (knows Spy evsFo);

Key (pairK(A,B)) ∈ knows Spy evsFo]]
=⇒ Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo ∈ sr

Fig. 11.11. Inductive model of Shoup-Rubin: threats on session keys

Because the means between agents and smartcards is assumed secure,
the model must be extended to allow the Spy to obtain the outputs of the
illegally usable cards. According to the template in Figure 10.3, we introduce
a further rule for each card output. Rule SR4 Fake in Figure 11.12 is built
from SR4, while analogous rules SR7 Fake (built from SR7) and SR10 Fake
(built from SR10) are also needed but omitted here.

SR4 Fake :
[[evs4F ∈ sr; illegalUse(Card A); Nonce Na 6∈ used evs4F;
Inputs Spy (Card A) (Agent A) ∈ set evs4F]]

=⇒ Outputs (Card A) Spy {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}
evs4F ∈ sr

Fig. 11.12. Inductive model of Shoup-Rubin: threats on card outputs

11.2.10 Accidents

The protocol model must be completed by allowing accidents (or breaches of
security) on session keys, as shown in Figure 11.13. This is typically done by
a single rule (as seen on BAN Kerberos, §6.4), or by two rules leaking two
different kinds of session keys (as seen on Kerberos IV, §7.2.5).

11.3 Verifying Shoup-Rubin 175

OopsB :
[[evsOb ∈ sr;

Outputs (Card B) B {|Nonce Nb, Key K, Cert,
Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evsOb]]
=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} # evsOb ∈ sr

OopsA :
[[evsOa ∈ sr;

Outputs (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}
∈ set evsOa]]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} # evsOa ∈ sr

Fig. 11.13. Inductive model of Shoup-Rubin: accidents

Shoup-Rubin requires both peers to handle the same session key, respec-
tively in phases IV and VI. Therefore, the Spy has a chance to discover the
session key from both of them. In the worst case, she will also discover the
nonce used to compute the key and the identity of its peers (OopsA and
OopsB).

The Spy cannot learn any pair-k’s by accident because no agent ever sees
any. By definition of initState, she can only know some initially by exploiting
the relevant cloned cards.

11.3 Verifying Shoup-Rubin

In general, it may be useful to interpret the guarantees proved for a smart-
card protocol also from the viewpoint of smartcards, possibly helping opti-
mise their hardware or software design. This section discusses those estab-
lished about Shoup-Rubin; hence, evs is a generic trace of the formal protocol
model sr. Observe that a guarantee that requires inspecting the form of a
certificate may be useful to cards but never to agents, who cannot decipher
any certificates since they know no long-term keys. The minimal trust now
often includes that certain cards not be usable by the Spy.

The reliability theorems show that the model makes the expected use of
smartcards (§11.3.1) and that messages 7 and 10 crucially lack some explic-
itness. Suitable regularity lemmas can be expressed about all three kinds of
long-term keys employed by the protocol (§11.3.2). While the authenticity
argument (§11.3.3) only yields a single guarantee for the card that belongs to
the protocol initiator, the unicity argument (§11.3.4) will provide guarantees
for both initiator and responder. Confidentiality (§11.3.5) is weakened by the
mentioned lack of explicitness, as are the goals of authentication (§11.3.6)
and key distribution (§11.3.7). Theorem names follow our usual conventions
(§1.3.2).

176 11. Verifying a Smartcard Protocol

11.3.1 Reliability of the Shoup-Rubin Model

The model Server functions reliably (Theorem 11.3.1). However, this theorem
cannot be made useful to A (the way Theorem 7.3.1 was by Theorem 7.3.3).
The authenticity argument about the message {|NoncePk ,Cert |} is extremely
weak. Should A receive such a message, she cannot be guaranteed that it is
an instance of message 2, namely that the Server sent it, because the message
is concatenated; nor can she inspect the form of the certificate.

Theorem 11.3.1 (SR Says Server message form). If evs contains

Says Server A {|NoncePk ,Cert |}

then, for some B,

Pk = Pairkey(A,B) and
Cert = Crypt(shrK A){|Nonce (Pairkey(A,B)),AgentB|}.

As mentioned above, the proof relies on the assumption that A is not the
Server made in rule SR1, which would introduce an event falsifying the con-
clusion of the theorem. It also relies on a subsidiary lemma stating that the
Server never uses his smartcard (SR Outpts Server not evs, omitted here);
otherwise, rules SR8 or SR11 would also introduce events falsifying the theo-
rem. In turn, that lemma only holds if the condition that A is not the Server
is added to rule SR4.

Further guarantees concern the use of the smartcards allowed by the pro-
tocol, the outputs that they produce and the inputs that uncompromised
agents send them.

On the use of the smartcards. If an agent other than the Spy queries a
smartcard or receives a message from it, then the card must belong to that
agent and must be legally usable (Theorem 11.3.2). Hence, that agent can
only use his own card and can only use it legally, as we required.

Theorem 11.3.2 (SR Inputs Outpts Card). If A is not the Spy and evs
contains either

Inputs A C X or Outputs C A Y

then

C = Card A and legalUse(Card A).

Our Spy can act both legally and illegally. In fact, if the Spy uses a
smartcard, then the card must be either the Spy’s own card, which is legally
usable, or some other agent’s card that is illegally usable (Theorem 11.3.3).
Since the Spy’s card is not illegally usable, the agent A mentioned by the
theorem certainly differs from the Spy.

Theorem 11.3.3 (SR Inputs Card Spy). If evs contains either

Inputs Spy C X or Outputs Spy A Y

11.3 Verifying Shoup-Rubin 177

then

(C = Card Spy and legalUse(Card Spy)) or
(∃A. C = Card A and illegalUse(Card A)).

On the outputs of the smartcards. To establish that the model smart-
cards work reliably, two categories of guarantees can be proved for the Outputs
events.

One category states that the cards only give the correct outputs when fed
the expected inputs, so the cards cannot grant the Spy unlimited resources.
The case for step 10 of the protocol is presented below (Theorem 11.3.4),
while those for steps 4 and 7 are similar and omitted here.

Theorem 11.3.4 (SR Outpts which Card 10). If evs contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B))(NonceNb)|}

then, for some Na, evs also contains

Inputs A (Card A) {|AgentB,NonceNa,NonceNb,Nonce (Pairkey(A,B)),
Crypt(shrK A){|Nonce (Pairkey(A,B)),AgentB|},
Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(crdK(Card A))(NonceNa) |}.

Another category of reliability theorems confirms that the card CPUs
function correctly. Therefore, given a specific output, the form of its com-
ponents can be tracked down. One such guarantee can be established on an
instance of message 4 (Theorem 11.3.5). The length of the certificate must
be checked because of the protocol ambiguity already encountered (§11.2.4).
Recall that an event Outputs C A X also models A’s reception of X, so the
theorem is applicable also by A.

Theorem 11.3.5 (SR Outpts A Card form 4). If evs contains

Outputs (Card A)A {|NonceNa,Cert |}

and Cert is not concatenated, then

Cert = Crypt(crdK(Card A))(NonceNa).

Analogous considerations apply to message 7. Upon B’s reception of an
output, we can guarantee its form for some peer A and some nonce Na (The-
orem 11.3.6). The existential form of the assertion says that B receives the
session key in a message that does not inform him of the peer with whom
the key is to be used. This violates a well-known explicitness principle, per-
haps unknown at the time of the design, due to Abadi and Needham: “Every
message should say what it means. The interpretation of the message should
depend only on its content” [7, §2.1]. The underlying transport protocol can-
not reveal the peer’s identity either. If B uses the session key with the wrong

178 11. Verifying a Smartcard Protocol

peer, the consequences should not be disastrous provided that the key remains
confidential. But, this lack of explicitness does weaken the confidentiality, au-
thentication and key distribution guarantees accomplished by the protocol,
as discussed below.

Theorem 11.3.6 (SR Outpts B Card form 7). If evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert1 ,Cert2 |}

then, for some A and Na,

Kab = sesK(Nb, pairK(A,B)) and
Cert1 = Crypt(pairK(A,B)){|NonceNa,NonceNb|} and
Cert2 = Crypt(pairK(A,B))(NonceNb).

The card CPUs are also reliable when producing an instance of message 10
(Theorem 11.3.7). The existential form of the assertion reveals another lack
of explicitness in the protocol design: the identity of the peer with whom to
use the key is not specified. When A receives the session key, she has to guess
the peer who shares it. This task is entirely heuristic in our threat model, as
the card might give its outputs in an unspecified order. Similarly, the message
fails to mention the nonce associated with the session key.

Theorem 11.3.7 (SR Outpts A Card form 10). If evs contains

Outputs (Card A)A {|Key Kab,Cert |}

then, for some B and Nb,

Kab = sesK(Nb, pairK(A,B)) and
Cert = Crypt(pairK(A,B))(NonceNb).

The theorem also shows that step 10 binds the form of the session key to
the card that creates it, and associates the session key with the certificate.
Therefore, should the former be inspectable, the structure of the latter could
be derived (Theorem 11.3.8), and vice versa.

Theorem 11.3.8 (SR Outpts A Card form 10 bis). If evs contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A′, B))),Cert |}

then,

A = A′ and Cert = Crypt(pairK(A,B))(NonceNb).

On the inputs of the smartcards. Analogous categories of guarantees
can be established for the Inputs events.

Agents other than the Spy must use the legally usable smartcards in a legal
manner. Therefore, they produce inputs whose origin can be documented. For
example, let us assume that an agent A queries a card as in step 9 of the
protocol (by Theorem 11.3.4, the card belongs to A) quoting an agent B. We
can prove that A initiated a session with B, and received the components

11.3 Verifying Shoup-Rubin 179

of the query either from the network or from the card, by means of suitable
events (Theorem 11.3.9).

Theorem 11.3.9 (SR Inputs A Card 9). If A is not the Spy and evs
contains

Inputs A C {|Agent B,NonceNa,NonceNb,NoncePk ,

Cert1 ,Cert2 ,Cert3 |}

then evs also contains

Says A Server {|AgentA,AgentB|} and
Gets A {|NoncePk ,Cert1 |} and
Gets A {|NonceNb,Cert2 |} and
Outputs C A {|NonceNa,Cert3 |}.

Although the first event of the conclusion highlights A’s intention to com-
municate with B, none of the remaining events mentions B. So, A cannot be
assured she is feeding her card the components meant for the session with
B. Even if the Gets events mentioned B, his identity would not be reliable as
the Spy can tamper with concatenated messages coming from the network.
The Outputs event could mention B reliably as it takes place over a secure
means, but fails to do so. However, by Theorem 11.3.4, A will get an output
from her card only if she uses the correct components as input.

Similar theorems pertain to the other queries to the smartcards, steps 3
and 6 of the protocol.

The form of the inputs created in steps 3 and 6 of the protocol are self-
explanatory. Step 9 is more complicated. While most of such input was ex-
posed to the network risks, the certificate produced earlier by A’s card was
not, so its form can be derived (Theorem 11.3.10) signifying that all agents
use their own card correctly.

Theorem 11.3.10 (SR Inputs A Card form 9). If evs contains

Inputs A (Card A) {|AgentB,NonceNa,NonceNb,NoncePk ,

Cert1 ,Cert2 ,Cert3 |}

then

Cert3 = Crypt(crdK(Card A))(NonceNa).

Observe that the guarantee also applies to the Spy’s use of her own card. Upon
reception of a message, A’s card can determine whether it is an instance of
message 9 by looking at its cleartext part. The card should inspect carefully
the second and third certificates because they could be fake. Their form is
in fact not provable in the model. Having proved the integrity of the third
certificate may suggest that it is superfluous to the design, and that the
card can avoid checking it. Nevertheless, should an agent insert a fake nonce
as second component of message 9, inspection of the third certificate would

180 11. Verifying a Smartcard Protocol

detect the misbehaviour. However, any agent other than the Spy only acts
legally.

11.3.2 Regularity

The protocol sends no long-term keys over the network, so the Spy could
do so if and only if she knows them before the protocol begins. The Spy
can discover a card key and the card owner’s key only from cloning the card
(see definition of initState, §11.2). Using the latter key, she can compute all
the pair-k’s meant for the card owner. The three relevant regularity lemmas
follow.

Lemma 11.3.1 (SR Spy analz shrK). Trace evs is such that
Key (shrK A) ∈ analz(knows Spy evs) if and only if Card A ∈ cloned.

Lemma 11.3.2 (SR Spy analz crdK). Trace evs is such that
Key (crdK C) ∈ analz(knows Spy evs) if and only if C ∈ cloned.

Lemma 11.3.3 (SR Spy analz pairK). Trace evs is such that
Key (pairK(P,B)) ∈ analz(knows Spy evs) if and only if Card B ∈ cloned.

11.3.3 Authenticity

All Shoup-Rubin’s certificates are sealed with long-term keys, so the agents
do not directly get authenticity guarantees about them. However, since the
long-term keys are stored into the smartcards, the authenticity argument in
general can be formulated for the smartcards, possibly helping to optimise
their design. The agents may get authenticity guarantees indirectly from the
smartcards. Shoup-Rubin inputs a smartcard with encrypted certificates only
in step 9. We develop the corresponding authenticity argument via some
subsidiary authenticity lemmas that are not directly applicable by either
agents or cards. Incidentally, due to the assumption of secure means, if a
card receives a certificate as part of an input in a trace evs, it cannot be
immediately concluded by definition of knows (§10.3) that the certificate is
in the network traffic, namely in parts(knows Spy evs). But perhaps it can be
concluded by other methods due to specific features of the protocol.

Along with a pairkey, the Server issues a certificate that verifies it. When
the certificate is in the traffic, we can prove that it originated with the Server
if the regularity Lemma 11.3.1 is applicable. Therefore, given that the peer’s
card is not cloned, the certificate is authentic (Lemma 11.3.4). At this stage,
the form of the pairkey can be specified via Theorem 11.3.1.

Lemma 11.3.4 (SR Pairkey certificate authentic). If A’s card is not
cloned and evs is such that

Crypt(shrK A){|NoncePk ,Agent B|} ∈ parts(knows Spy evs)

11.3 Verifying Shoup-Rubin 181

then evs contains

Says Server A {|NoncePk ,Crypt(shrK A){|NoncePk ,AgentB|}|}

and

Pk = Pairkey(A,B).

We can verify formally that the certificate that associates A and B’s
nonces is built in step 7 (Lemma 11.3.5). Since the certificate is sealed with
the corresponding pair-k, investigating its origin requires an appeal to the reg-
ularity Lemma 11.3.3, which prescribes B’s card not to be cloned. However,
a stronger assumption is needed on B’s card to let us solve case SR7 Fake:
the card must not be illegally usable; otherwise, it could also output towards
the Spy.

Lemma 11.3.5 (SR Na Nb certificate authentic). If B’s card is not il-
legally usable and evs is such that

Crypt(pairK(A,B)){|NonceNa,Nonce Nb|} ∈ parts(knows Spy evs)

then evs contains

Outputs (Card B) B {|NonceNb,Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |}.

Message 7 ends with another certificate that verifies B’s nonce, namely
{|Nb|}πab

. So, we can prove a theorem, omitted here, that is identical to Theo-
rem 11.3.5, except for the certificate considered and the assertion now being in the
scope of an existentially quantified nonce Na (SR Nb certificate authentic bis,
omitted here). The same certificate is also output by A’s card in message 10.
Proving this result (Lemma 11.3.6) also requires B not to be the Spy in order
to solve case SR7 (so that the corresponding event does not introduce the
certificate in the traffic), and A’s card not to be illegally usable to solve case
SR10 Fake.

Lemma 11.3.6 (SR Nb certificate authentic). If B is not the Spy, A
and B’s cards are not illegally usable and evs is such that

Crypt(pairK(A,B))(NonceNb) ∈ parts(knows Spy evs)

then evs contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B))(NonceNb) |}.

The authenticity lemmas serve to prove an authenticity theorem that is
applicable by A’s card (Theorem 11.3.11). So, the theorem must include the
assumptions on agents and cards required by the lemmas. Upon reception
of message 9, the card must inspect the first two certificates, as advised by

182 11. Verifying a Smartcard Protocol

Theorem 11.3.10. If the first certificate has the expected form, then Theo-
rem 11.3.9 and Lemma 11.3.4 (plus the basic lemma that once a message is
received, its components appear in the traffic) prove the first event of the
assertion. Hence the assumptions that A is not the Spy and that her card
is not cloned. These cannot be replaced by the assumption of A’s card not
being illegally usable, which is weaker. Similarly, if the second certificate is
as expected, then Theorem 11.3.9 and Lemma 11.3.5 prove the second event.
Hence the assumption that B’s card is not illegally usable. The third cer-
tificate does not need to be inspected thanks to its provable integrity, so
Theorem 11.3.9 alone justifies the third event of the assertion. This reason-
ing is mechanisable by one Isabelle command that applies Theorem 11.3.9
only once, and then the necessary authenticity lemma.

Theorem 11.3.11 (SR Inputs A Card 9 authentic). If A is not the
Spy, A’s card is not cloned, B’s card is not illegally usable and evs contains

Inputs A (Card A) {|Agent B,NonceNa,NonceNb,NoncePk ,
Crypt(shrK A){|NoncePk ,Agent B|},
Crypt(pairK(A,B)){|NonceNa,NonceNb|},Cert3 |}

then evs also contains

Says Server A {|NoncePk ,Crypt(shrK A){|NoncePk ,Agent B|}|} and
Outputs (Card B) B {|NonceNb,Key (sesK(Nb, pairK(A,B))),

Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |} and

Outputs (Card A) A {|NonceNa,Cert3 |}.

The authenticity of the crucial message components can be investigated in
the same fashion as that of the certificates. Let us consider the authenticity
of pairkeys. Only the Server is entitled to issue Pairkey(A,B), which does
not belong to the initial knowledge of the Spy if either A or B’s card is not
cloned. This may let us believe that, if for example A’s card is not cloned
and that pairkey is in the traffic, then the Server must have issued it. This
conjecture is easy to formalise (Conjecture 11.3.1).

Conjecture 11.3.1 (SR Pairkey authentic). If A’s card is not cloned and evs
is such that

Pairkey(A,B) ∈ parts(knows Spy evs)

then, for some Cert , evs contains

Says Server A {|Nonce (Pairkey(A,B)),Cert |}.

A proof attempt leaves us, in particular, with the subgoal in Figure 11.14,
which arises from case Nil. It cannot be derived that A = A′ because the
pairkey is implemented in terms of the exclusive-or operator, which is not
collision-free. The subgoal can be in fact falsified because there may exist

11.3 Verifying Shoup-Rubin 183

two pairs of distinct agents A, A′ and B, B′ who satisfy the premises. In
consequence, the conjecture does not hold. This proof attempt teaches us that
the Spy might exploit the collisions suffered by the exclusive-or operator and
forge a pairkey without knowing its original components. The probability of
this happening is influenced by the redundancy introduced by the encryption
function and by the length of the ciphers.

[[Card A 6∈ cloned;
Pairkey(A,B) = Pairkey (A’,B’);
Card A’ ∈ cloned; Card B’ ∈ cloned]] =⇒ False

Fig. 11.14. Proving pairkey authenticity for Shoup-Rubin: failed

We now examine the authenticity of the session key. This crucial message
component is only sent between cards and agents, never over the network.
Despite this, the Spy could either forge it (by Forge), or obtain it from her
own card if she is one of the peers (by SR7 or SR10), or learn it from the
illegally usable cards (by SR7 Fake or SR10 Fake). Let us make the assump-
tions that prevent all these circumstances. For example, if the responder’s
card is not illegally usable and therefore not cloned, then the session key
cannot be forged by Lemma 11.3.3. Then, if a session key ever appears in
the traffic, one of its peers necessarily leaked it by accident, while the trace
recorded the corresponding oops event (Lemma 11.3.7). This turns out to
be a counterguarantee of authenticity because it emphasises the conditions
under which a session key that is in the traffic is not authentic: the Spy in
fact introduced it. However, it will be fundamental to assess a form of session
key confidentiality.

Lemma 11.3.7 (SR sesK authentic). If A and B are not the Spy, their
cards are not illegally usable and evs is such that

Key (sesK(Nb, pairK(A,B))) ∈ parts(knows Spy evs)

then evs contains

Notes Spy {|Key (sesK(Nb, pairK(A,B))),NonceNb,AgentA,AgentB|}.
Proving the authenticity lemmas requires a common method (simpler

than Paulson’s for the authenticity theorems on traditional protocols [133,
§4.7]). We present below the method for Shoup-Rubin, which can be gener-
alised straightforwardly to any smartcard protocol.

1. Apply induction.
2. If the lemma concerns

– a certificate sealed with a shared key, then simplify case Fake by
Lemma 11.3.1;

– a certificate sealed with a card key, then simplify case Fake by Lemma
11.3.2;

184 11. Verifying a Smartcard Protocol

– a certificate sealed with a pair-k, then simplify case Fake by Lemma
11.3.3;

– a session key, then apply “H ⊆ parts H” to case Forge and simplify it
by Lemma 11.3.3.

3. Solve case Fake by the standard method spy analz [133, §4.5].
4. Apply the theorems confirming that the cards function reliably as follows:

Theorem 11.3.5 to case SR9, Theorem 11.3.6 to cases SR8 and OopsB,
Theorem 11.3.7 to case SR11, and a variant of Theorem 11.3.7 — which
binds the form of the certificate, given the form of the session key — to
case OopsA.

5. Simplify remaining cases.

11.3.4 Unicity

Shoup-Rubin requires B’s card to build a fresh session key in message 7. The
key is bound uniquely to the remaining components of the message (The-
orem 11.3.12). In proving this result, after induction and simplification two
subgoals remain, which are about SR7 and SR7 Fake. The latter is easily solv-
able because it forces the Spy to use her own card illegally, which is impossi-
ble. The other case is solved by freshness: the session key could not appear be-
fore. Message 7 also contains B’s fresh nonce, so a variant of the theorem may
be proved using the nonce as a pivot (SR Outpts B Card unique nonce,
omitted here).

Theorem 11.3.12 (SR Outpts B Card unique key). If evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert1 ,Cert2 |} and
Outputs (Card B′) B′ {|NonceNb′,Key Kab,Cert1 ′,Cert2 ′|}

then

B = B′ and Nb = Nb′ and Cert1 = Cert1 ′ and Cert2 = Cert2 ′.

A similar theorem (SR Outpts A Card unique nonce, omitted here)
holds for the output of step 4, exploiting the freshness of A’s nonce. More
surprisingly, it holds for the output of message 10 too (Theorem 11.3.13);
Theorem 11.3.8 supplies to the fact that the card uses no fresh components.
Whenever a specific session key appears, the form of the corresponding cer-
tificate can be assessed, so the same key cannot stand by two different cer-
tificates. This method solves the subgoal about SR10, while the one about
SR10 Fake is terminated routinely.

Theorem 11.3.13 (SR Outpts A Card unique key). If evs contains

Outputs (Card A)A {|Key Kab,Cert |} and
Outputs (Card A′)A′ {|Key Kab,Cert ′|}

then

11.3 Verifying Shoup-Rubin 185

A = A′ and Cert = Cert ′.

The unicity theorems may teach agents a lot. For example, if in the real
world B receives the same session key within two different instances of mes-
sage 7, he may suspect that something wrong has happened. Having violated
Theorem 11.3.12, the scenario is due to problems that lie outside our model,
ranging from a weird malfunction of B’s card to a Spy’s violation of the as-
sumption of secure means. Theorem 11.3.13 provides the equivalent guarantee
to A.

However, if B happens to receive the same session key within the same
message more than once, Theorem 11.3.12 will not be violated. Still, the sce-
nario is unaccountable in the model, and thus should alarm B. Since all card
CPUs function correctly, B’s card must always compute a fresh key. A further
guarantee may be designed to assist B in this circumstance. Upon reception
of any output commencing with a nonce, B can be assured that the corre-
sponding event is unique (Theorem 11.3.14). After expanding the definition
of the predicate, the cases about SR4 and SR7 are solved by freshness of the
nonce. The result also applies to the output of A’s card in step 4. No similar
theorem can be established about step 10, which does not involve any fresh
components.

Theorem 11.3.14 (SR Outpts A Card Unique). If evs contains

Outputs (Card B) B {|NonceNb, rest |}

then

Unique (Outputs (Card B) B {|NonceNb, rest |}) on evs.

11.3.5 Confidentiality

Some counterguarantees of confidentiality can be easily obtained. Even if a
specific pairkey has not been issued by the Server and its components cannot
be forged, the pairkey cannot be proved confidential because of the weakness
discovered via the authenticity argument (§11.3.3). Also, it is straightforward
to observe from messages 6 and 8 that neither A’s nor B’s nonces remain
confidential.

On the contrary, the regularity lemmas may be viewed as non-trivial con-
fidentiality guarantees. Moreover, applying analz parts H to the authenticity
Lemma 11.3.7, we obtain a guarantee of session key confidentiality. Any ses-
sion key that cannot be forged and that has not been leaked by accident is
confidential (Theorem 11.3.15). Unfortunately, the theorem is not useful to
agents because the structure of the session key must be inspected.

Theorem 11.3.15 (SR Confidentiality). If A and B are not the Spy,
their cards are not illegally usable and evs does not contain

Notes Spy {|Key (sesK(Nb, pairK(A,B))),NonceNb,AgentA,Agent B|}

186 11. Verifying a Smartcard Protocol

then evs is such that

Key (sesK(Nb, pairK(A,B))) 6∈ analz(knows Spy evs).

This result cannot be strengthened sufficiently: we have discovered that the
theorems of session key confidentiality cannot be applied by the peers within
their respective minimal trust due to the lack of explicitness that affects two
protocol steps [25]. It follows that the Shoup-Rubin protocol grants weak
confidentiality guarantees to its peers unless the design is slightly modi-
fied (§11.4). However, the guarantees presented below can be applied by the
smartcards, which might be a significant outcome for a smartcard protocol.

Paulson’s general method for verifying confidentiality (§4.5) can be fol-
lowed here. The necessary simplification law for analz, the session key compro-
mise theorem, is fairly easy to obtain, since Shoup-Rubin never sends session
keys over the network. The confidentiality argument for a protocol responder
B must be developed on the basis of an event that B can verify, namely that
his card sends a message that contains the session key. This takes place in
step 7 of the protocol, which is formalised by the event

Outputs (Card B) B {|NonceNb,Key Kab,Cert1 ,Cert2 |}

This includes two certificates, Cert1 and Cert2 , that B cannot inspect be-
cause they are sealed with specific long-term keys (no agent knows any).

We have attempted to prove Kab confidential in a trace evs that contains
no oops event leaking Kab but that does contain the mentioned event. Also,
B’s card must be assumed not to be cloned, or the Spy would otherwise know
pairK(P,B) for any agent P , in which case she would be able to forge the
session key by rule Forge. The proof leaves two subgoals unsolved, respectively
arising from cases SR10 and SR10 Fake. The inspection of the former teaches
us that B’s peer might be the Spy, who could obtain a copy of Kab from
her own smartcard. The latter subgoal shows that B’s peer’s card could be
illegally usable regardless of the identity of the peer; the Spy would be able
to use this card to compute Kab. While the protocol requires B’s card to
issue a new session key in step 7, his peer in fact computes a copy of the key
from available components in step 10.

Therefore, further assumptions are necessary on B’s peer and her card,
but the message output to B does not state the identity of such a peer. This
signifies that B does not obtain explicit information about the peer with
which the session key is to be used, which again violates the explicitness
principle of Abadi and Needham: “If the identity of a principal is essential
to the meaning of a message, it is prudent to mention the principal’s name
explicitly in the message” [7, §4]. If either one of the certificates is inspected,
then B’s peer, A, becomes explicit, so the relevant assumptions can be stated
and Theorem 11.3.16 proved.

Theorem 11.3.16 (SR Confidentiality B). If A and B are not the Spy,
A’s card is not illegally usable, B’s card is not cloned and evs contains

11.3 Verifying Shoup-Rubin 187

Outputs (Card B) B {|NonceNb,Key Kab,Cert ,
Crypt(pairK(A,B))(NonceNb)|}

but does not contain

Notes Spy {|Key Kab,NonceNb,Agent A,AgentB|}

then evs is such that

Key Kab 6∈ analz(knows Spy evs).

From B’s viewpoint, trusting that the peer is not malicious and her card
cannot be used by the malicious entity is indispensable. So is trusting that
the key has not been leaked by accident. These assumptions belong to B’s
minimal trust. What is more important is that B cannot verify that the main
event of the theorem ever occurs because he cannot inspect the certificate.
Therefore, he cannot apply the theorem. Our conclusion is that the protocol
fails to make session key confidentiality available to B in our threat model.

Shoup and Rubin’s analysis based on provable security asserts an analo-
gous property requiring that the peers’ cards be unopened [148, §3.1], which
may be interpreted as not cloned in our treatment. However, their analysis
does not report lack of explicitness, whereas ours does, thanks to the use of
goal availability. In fact, from B’s viewpoint, trusting his peer and his peer’s
card belongs to his own minimal trust, but trusting every agent does not. The
protocol does not allow B to learn which peer to trust in the given threat
model.

Similar considerations arise when reasoning from A’s viewpoint. The at-
tempt to prove confidentiality on the assumption that the event

Outputs (Card A) A {|Key Kab,Cert |}

formalising step 10 occurs, leaves the subgoals arising from SR7 and SR7 Fake
unsolved. They highlight that A could be communicating either with the Spy
or with an agent whose card is illegally usable. In fact, step 10 fails to express
A’s peer. Also this theorem, as the previous one, can be proved if the form
of Cert is explicit, resulting in a guarantee that can be applied by A’s card
but not by A (Theorem 11.3.17).

Theorem 11.3.17 (SR Confidentiality A). If A and B are not the Spy,
A and B’s cards are not illegally usable and evs contains

Outputs (Card A)A {|Key Kab,Crypt(pairK(A,B))(NonceNb)|}

but does not contain

Notes Spy {|Key Kab,NonceNb,AgentA,AgentB|}

then evs is such that

Key Kab 6∈ analz(knows Spy evs).

188 11. Verifying a Smartcard Protocol

Our conclusion is that the protocol fails to make session key confidentiality
available to A in our threat model. However, Theorems 11.3.16 and 11.3.17
must be interpreted with care, as this type of protocol should also provide
guarantees to the smartcards. It can be seen that these guarantees are appli-
cable by the smartcards, which can check their main assumptions. The lack
of explicitness only exists for the agents.

11.3.6 Authentication

The lack of explicitness that affects messages 7 and 10 also weakens the goals
of authentication. Only A’s card obtains a useful guarantee and so can detect
whether certain components are being used with the wrong peer. The proof
script pertaining to the following guarantees can be found in Appendix C.3.

Phase V terminates B’s role in the protocol. Then, B’s peer, A, obtains
the session key from message 10, but the identity of B remains unspeci-
fied unless the certificate is inspected. If the certificate is not fake, then it
must have originated with the instance of message 7 that concerns B (The-
orem 11.3.18). The proof observes that the event of the assumption implies
that the certificate {|Na,Nb|}πab

appears in the traffic for some Na; then,
it applies Lemma 11.3.5. This theorem is not applicable by A, who cannot
check its main assumption, hence the corresponding goal is not available to
her. But it is significant to A’s card, which can inspect the certificate. When
the card issues A with the session key, it is guaranteed that both B and his
card were present on the network and that B’s card, which is using the pair-k
for A and B, is participating in a session with A.

Theorem 11.3.18 (SR A authenticates B). If B’s card is not illegally
usable and evs contains

Outputs (Card A)A {|Key Kab,Crypt(pairK(A,B))(NonceNb)|}

then, for some Na, evs also contains

Outputs (Card B) B {|NonceNb,Key Kab,

Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |}.

This result may be interpreted as weak agreement of B’s card with A’s. The
cards know the components of their outputs, so the result may also be viewed
as non-injective agreement of B’s card with A’s on Kab. However, expressing
this formally requires extending the function knows on smartcards (§10.3),
which seems questionable because of the limited memory of the cards.

A variant of the theorem just given can be proved by replacing its main
assumption with an earlier event: A’s reception of an instance of message 8
(SR A authenticates B Gets, omitted here). However, our conclusions do
not change because the variant requires inspection of the certificate that
arrives with the message, which A is not able to do.

11.3 Verifying Shoup-Rubin 189

A relevant authentication guarantee for B should establish that A is active
after B creates the session key. At the end of the protocol, B may receive
from the network the certificate for his nonce. Provided that Lemma 11.3.6 is
applicable, A’s card can be proved to have sent a suitable instance of message
10, which establishes the presence of A and her card, and A’s card intention
to communicate with B (Theorem 11.3.19).

Theorem 11.3.19 (SR B authenticates A). If B is not the Spy, A and
B’s cards are not illegally usable and evs contains

Gets B (Crypt(pairK(A,B))(NonceNb))

then evs also contains

Outputs (Card A)A {|Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B))(NonceNb) |}.

Is this theorem useful to B? The answer is “no” because the agent cannot
inspect the encrypted certificate. So, in practice B obtains no information
about the sender of the certificate, and his peer remains unknown. Observing
that the certificate was originally created in message 7 does not help because
neither that message states the peer (Theorem 11.3.6). A possible method,
which we verified, to make the authentication goal available to B is to con-
clude the protocol with two additional steps: B forwards the certificate to his
card, and the card responds with A’s identity. The card should use the right
pair-k to decrypt the certificate, thus identifying A. While adding explicit-
ness to message 7 is a simpler fix (as demonstrated below, §11.4), making the
guarantee available also to B’s card necessarily requires the additional steps.

11.3.7 Key Distribution

The key distribution guarantees discussed here are the strongest that can
be proved, but are not applicable by the peers. Hence, we conclude that the
protocol fails to make key distribution available. However, we shall see that
one guarantee is applicable by A’s card.

Applying the definition of knows to the conclusion of Theorem 11.3.18
indicates that, when A’s card computes the session key for A, the key is
already known to B (Theorem 11.3.20). But A cannot profit from this result.
The theorem does not prevent B from being the Spy.

Theorem 11.3.20 (SR A keydist to B). If B’s card is not illegally us-
able and evs contains

Outputs (Card A)A {|Key Kab,Crypt(pairK(A,B))(NonceNb)|}

then evs is such that

Key Kab ∈ analz(knows B evs).

190 11. Verifying a Smartcard Protocol

Let us attempt to design the corresponding guarantee for B. His session
key is obtained via message 7. By Theorem 11.3.19, if B receives the last
message of the protocol, he infers that A obtained some session key. The two
events must be correlated in order to assure that both peers hold the same
key. This can only be done by inspecting one of the certificates of message
7, so as to make A explicit. Then, Theorem 11.3.6 specifies the form of the
session key that is output by B’s card (Theorem 11.3.21).

Theorem 11.3.21 (SR B keydist to A). If B is not the Spy, A and B’s
cards are not illegally usable and evs contains

Outputs (Card B) B {|NonceNb,Key Kab,Cert ,
Crypt(pairK(A,B))(NonceNb)|} and

Gets B (Crypt(pairK(A,B))(NonceNb))

then evs is such that

Key Kab ∈ analz(knows A evs).

No stronger result than this can be envisaged because there exists no protocol
message that binds the session key with both of its peers. Can B inspect any
of the certificates of message 7 ? Or, can B’s card inspect that of the last
message? Both answers being negative, Theorem 11.3.21 turns out to be
applicable by neither B nor his card, which seems a poor outcome for the
protocol.

11.4 Verifying Shoup-Rubin-Bella

Omitting B’s name from message 2 of the public-key Needham-Schroeder
protocol led to Lowe’s well-known attack [107]. Although public-key cryp-
tography attempted to enforce confidentiality of the nonces, the Spy could
intercept the messages while interleaving two sessions, learn an important
nonce, and violate the authentication of the initiator to the responder. With
Shoup-Rubin, the secure contexts between agents and smartcards prevent
this. However, since the card data buses are not reliable (§10.1.1), when lack
of explicitness affects the card outputs, the agents cannot distinguish which
protocol session a single output belongs to, which seems realistic.

Abadi and Needham demonstrate that lack of explicitness may crucially
affect the interpretation of a message: “The names relevant for a message
can sometimes be deduced from other data and from what encryption keys
have been applied. However, when this information cannot be deduced, its
omission is a blunder with serious consequences” [7, §4].

As mentioned above, message 7 of Shoup-Rubin cannot inform B of A’s
identity both because the session key does not state its peers and because
the two certificates cannot be decrypted by any agents. Nor can message 10
inform A of B’s identity. Moreover, while message 7 quotes the nonce Nb that

11.4 Verifying Shoup-Rubin-Bella 191

is used to build the session key, message 10 fails to do so. These components
cannot be learnt from the underlying transport protocol. Therefore, upon
reception of an instance of message 10, agent A cannot derive the complete
form of the instance of message 7 sent during that session.

However, messages 6 and 9 quote the identity of the respective, intended
peer. So, it could be argued that, should the card data buses be reliable,
the calling agent could store the identity of the peer until the card returns,
and associate the session key just received with that peer. Nevertheless, mes-
sages 7 and 10 violate the explicitness principles that have been mentioned
throughout this chapter. Indeed, we have shown how they weaken the proto-
col goals when the extra assumption that the card data buses are reliable is
not made.

These considerations suggest updating messages 7 and 10 to design a
variant protocol, which we call Shoup-Rubin-Bella. It only differs from the
original protocol in the components underlined in Figure 11.15. The formal
protocol model is easy to update accordingly.

7. Cb → B : Nb, A,Kab, {|Na,Nb|}πab
, {|Nb|}πab

10. Ca → A : B,Nb,Kab, {|Nb|}πab

Fig. 11.15. Shoup-Rubin-Bella protocol: fragment

In the new model, many of the theorems discussed above obtain slightly
modified assertions and, crucially, assumptions that never inspect the cer-
tificates. So, the assumptions have become verifiable by the agents, signi-
fying that the updated protocol makes the corresponding goals available to
its peers. For example, Theorem 11.3.4 now (SRB Outpts which Card 10,
omitted here) can be enforced on the event

Outputs (Card A) A {|AgentB,NonceNb,Key Kab,Cert |}

In this section, evs is a generic trace of the model srb for the updated
protocol, which comes with the file ShoupRubinBella.thy (Figure 3.1). The
assertion of Theorem 11.3.6 can be stripped of one existential, so B learns the
peer for the session key (Theorem 11.3.6′). One existential still constrains the
form of one of the certificates, but B’s knowledge is not significantly affected.

Theorem 11.3.6′ (SRB Outpts B Card form 7). If evs contains

Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |}

then, for some Na,

Kab = sesK(Nb, pairK(A,B)) and
Cert1 = Crypt(pairK(A,B)){|NonceNa,NonceNb|} and
Cert2 = Crypt(pairK(A,B))(NonceNb).

192 11. Verifying a Smartcard Protocol

Similarly, proving an analogous (SRB Outpts A Card form 10, omitted
here) of Theorem 11.3.7 on the event

Outputs (Card A) A {|AgentB,NonceNb,Key Kab,Cert |}

avoids the existential quantifiers in the assertion because both B and Nb are
already bound. The entire authenticity argument remains unvaried, except for
an analogous of Theorem 11.3.11 (SRB Inputs A Card 9 authentic, omit-
ted here), which obtains the expected extra component.

The unicity results continue to hold. For example, Theorem 11.3.13 must
now cope with the additional components (Theorem 11.3.13′).

Theorem 11.3.13′ (SRB Outpts A Card unique key). If evs contains

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert |} and
Outputs (Card A′) A′ {|AgentB′,NonceNb′,Key Kab,Cert ′|}

then

A = A′ and B = B′ and Nb = Nb′ and Cert = Cert ′.

An analogous of Theorem 11.3.16 (SRB Confidentiality B, omitted here)
gets the simpler main assumption

Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |}

which is verifiable by B because the certificates are not inspected, and so does
an analogous of Theorem 11.3.17 (SRB Confidentiality A, omitted here),
which rests on

Outputs (Card A) A {|AgentB,NonceNb,Key Kab,Cert |}

In consequence, the peers will be able to decide, within their minimal trust,
whether the session key they obtain is confidential. Hence, that goal is avail-
able to them.

Both authentication theorems are strengthened in the sense that the cor-
responding goals are now available to the peers. Agent A can now be informed
that B and his card were present on the network and that B’s card intended to
communicate with A (Theorem 11.3.18′). Agent A must only verify to receive
from her card a message containing four components: an agent name, a nonce,
a key and a certificate. This version purposely is compact, but the form of
the certificates in the conclusion can be specified (SRB A authenticates B,
omitted here).

Theorem 11.3.18′ (SRB A authenticates B bis). If B’s card is not il-
legally usable and evs contains

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert2 |}

then, for some Cert1 , evs also contains

11.4 Verifying Shoup-Rubin-Bella 193

Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |}.

The result can be interpreted (§11.3.6) as non-injective agreement of B and
his card with A and her card on Kab. This goal is available to A and also to
her card.

Theorem 11.3.19 cannot be refined straight away by not inspecting the
mentioned certificate, because that would hide A’s identity. It can be re-
formulated (Theorem 11.3.19′) by introducing an appropriate Outpts event
that binds the necessary message components, and then by specifying the
second certificate by an analogous of Theorem 11.3.6 proved for the updated
protocol. The new theorem is applicable by B, who can check the reception
from the network of a certificate previously obtained from his card. Another
version specifies the form of the session key and of the second certificate
(SRB B authenticates A, omitted here).

Theorem 11.3.19′ (SRB B authenticates A bis). If B is not the Spy,
A and B’s cards are not illegally usable and evs contains

Outputs (Card B) B {|NonceNb,Agent A,Key Kab,Cert1 ,Cert2 |} and
Gets B (Cert2)

then evs also contains

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert2 |}.

This result expresses non-injective agreement of A and her card with B on
Kab. It is available to B but not to his card.

Theorem 11.3.20 can be enforced on the same assumptions as those of
Theorem 11.3.18′, and so becomes applicable by A (Theorem 11.3.20′).

Theorem 11.3.20′ (SRB A keydist to B). If B’s card is not illegally
usable and evs contains

Outputs (Card A)A {|AgentB,NonceNb,Key Kab,Cert2 |}

then evs is such that

Key Kab ∈ analz(knows B evs).

Similarly, the assertion of Theorem 11.3.21 can be proved on the assumptions
of Theorem 11.3.19′ and become applicable by B. The resulting theorem
(SRB B keydist to A, omitted here) along with Theorem 11.3.20′ signifies
that the Shoup-Rubin-Bella protocol makes key distribution available to both
its peers.

12. Modelling Accountability

A class of recent security protocols aim at their goals even if the peers
misbehave. This is a fundamental change to the threat model, and
demands a novel design strategy called accountability. The Inductive
Method only requires small extensions to manage accountability.

Classical security protocols establish secure communications over insecure
networks. Typically they assure that no attacker can obtain sensitive infor-
mation or impersonate another person. A protocol protects Alice and Bob,
who trust one another, from hostile parties. This scenario is inappropriate
when Alice does not even know Bob, let alone trust him. Purchasing goods
over the Internet requires trusting the merchant with your credit card details,
even if a protocol such as SSL protects against outsiders.

Preliminary registration is an attempt to strengthen trust. People who
wish to participate must first enroll with an authority. Protocols that employ
registration include SET [37] and Visa 3-D Secure [163]. Registration gives
Alice some confidence in Bob — since he can present signed credentials —
but it does not change the security framework. Alice still must trust Bob.
We have studied this strategy extensively within the analysis of the SET
registration protocols [36], which is not part of this book.

Accountability is a protocol design strategy that is meant to reduce the
need for trust [169]. For example, the non-repudiation protocol of Zhou and
Gollmann [171] aims at transmitting a message while ensuring that neither
the sender nor the receiver can deny taking part in the process. Each of
them in fact receives sufficient evidence to prove the other’s participation.
Another example is the certified e-mail protocol by Abadi et al. [4], which
similarly assures that an e-mail is delivered if and only if its sender gets
the return receipt. Both protocols are intended to achieve their goals even if
the other party misbehaves: Alice need not trust Bob, and vice versa. These
protocols will be analysed extensively in the next chapter. Crispo’s delegation
protocol [67], which is not studied in this book, is another simple instance of
the accountability strategy of design [43].

This chapter presents techniques for modelling and verifying accountabil-
ity protocols. Correctness of accountability protocols involves two concepts.

– Validity of evidence: an agent is given evidence sufficient to convince a
third party of his peer’s participation in the protocol.

196 12. Modelling Accountability

– Fairness: both agents obtain the promised items, or neither of them
does [17].

Proving the new properties required the development of novel methods
for proof and especially for specification. Allowing the peer to be the ad-
versary could make proofs excessively complicated. To keep proofs simple,
the guarantees must be expressed with care. We must also formalise various
forms of secure channels: channels that satisfy properties such as authenti-
cation, confidentiality or guaranteed delivery. Many accountability protocols
rely upon secure channels, which might be implemented by running another
security protocol: we thus arrive at the concept of higher-level protocols. Ac-
countability is often described in terms of evidence that can be presented to
a judge. We model the evidence only, not the judge, assuming that the judge
holds the evidence as soon as it exists.

This chapter pragmatically introduces the challenges that the new class
of protocols puts to formal analysis in general (§12.1). Then it discusses how
to face the challenges using the Inductive Method (§12.2).

12.1 Challenges for Formal Analysis

The verification of security protocols appears to be mature, but we expected
new challenges from accountability protocols. As a starting point, it was
necessary to find suitable formalisations and proof methods for the goals of
non-repudiation and certified e-mail delivery. Arguably, new security goals
are increasingly complex, and hence increasingly difficult to formalise and
prove. But we managed to face this very challenge rather easily (§12.1.1).

Accountability protocols may assume an available SSL channel. Coping
with this assumption from the formal verification standpoint inspired unex-
pected considerations and raised extra concerns. Designing a security protocol
presupposing that the goals of other security protocols are available follows
a hierarchical design strategy that entails the notion of higher-level security
protocol. We spell out this notion below (§12.1.2) but find it worthy of fur-
ther investigation, independently from accountability protocols. However, our
presentation respects the temporal thread of our research.

12.1.1 Formalising and Verifying the Novel Goals

If we aim at verifying new security goals, we must first solve the problem of
their formalisation. The accountability goals appeared to be intrinsically dif-
ferent from common goals such as confidentiality and authentication, which
we knew how to prove (see previous chapters). At the time, an eminent exam-
ple of formal analysis of Zhou-Gollmann’s protocol by pen and paper already
existed [144], but our aim was to find out whether that protocol would be
amenable to mechanised formal analysis. No attempt of formal analysis of

12.1 Challenges for Formal Analysis 197

the protocol by Abadi et al. was available (Abadi and Blanchet’s analysis [2]
was yet to be published). So, the available literature could not be of much
help.

Once the goals are formalised, it is necessary to develop adequate meth-
ods for proving them. However, the phases of formalisation and proof are
never separated. Inductive proof methods are appropriate for proving safety
properties. So, the main task was to find a formalisation of the new goals as
safety properties, whose feasibility was not at all obvious in the beginning.
Once this had been achieved, it was pleasing to realise that the existing proof
methods would scale up fairly easily (§12.2.1).

12.1.2 Challenges from Higher-Level Protocols

Classical security protocols, such as those from Clark and Jacob’s library [61],
aim at establishing various security goals. All those protocols are designed
on the assumption that underlying transport protocols are available to carry
out the delivery of cryptographic messages. Sometimes, a specific transport
protocol, such as FTP, is assumed.

Many recent security protocols rely on some other security protocol as
a primitive. For example, the fair exchange protocol by Asokan et al. [17]
presupposes that the peers authenticate each other by means of an authenti-
cation protocol before they engage in a transaction whereby they commit to
a contract. Likewise, the certified e-mail protocol requires the establishment
of an SSL channel between the e-mail recipient and the trusted third party.
As novel security goals become necessary, some of these protocols may be
required by upcoming security protocols targeted at the novel goals.

In general, any kind of construction customarily makes use of existing
constructions, and this process can be iterated hierarchically. Applying the
technique of hierarchical design to hardware development has been common
practice for decades. It appears that the same technique is starting to be
applied to security protocols. For example, presupposing that the goals of SSL
are available to achieve additional security goals is hierarchical design. This
setting inspires our hierarchical view of protocols, specified by the following
definition.

Definition 12.1.1 (Higher-Level Protocols).

– A 0th-level protocol is a protocol that transports messages and uses no
cryptography.

– An ith-level protocol, i ≥ 1, is a protocol that uses cryptography, (i-1)th-
level and 0th-level protocols, and, if i > 2, possibly some j th-level protocols
for any j such that j = 1, . . . , i− 2.

A 0th-level protocol is a transport protocol, while any i th-level protocol,
i ≥ 1, is a security protocol as such, namely meant to accomplish some secu-
rity goals. In particular, a first-level protocol is a classical security protocol,

198 12. Modelling Accountability

such as Kerberos or SSL. An i th-level protocol uses some cryptographic prim-
itives of its own, an (i− 1)th-level protocol and a transport protocol. It may
also use certain protocols of levels between 1 and i−2 if they are defined. The
word “use” is purposely left generic because it is unnecessary in this context
to distinguish between interleaved and sequential composition.

Definition 12.1.1 produces the protocol hierarchy in Figure 12.1. To an-
ticipate the next chapter’s treatment, the protocol by Abadi et al. clearly is a
second-level protocol, while that by Zhou-Gollmann’s is a first-level protocol.
The latter is indeed simpler because it presupposes no other security proto-
col. It would become a second-level protocol if we replaced the final FTP-get
steps by transmissions over an SSL channel, for example. It would remain a
first-level protocol if we replaced the FTP-get steps by transmissions over a
resilient channel.

0th-level : protocols that transport messages and use no cryptography.

1st-level : protocols that use cryptography and 0th-level protocols.

2nd-level : protocols that use cryptography, 1st-level and 0th-level protocols.

3rd-level : protocols that use cryptography, 2nd-level and 0th-level protocols,

and possibly also 1st-level protocols.

4th-level : protocols that use cryptography, 3rd-level and 0th-level protocols,

and possibly also 1st-level or 2nd-level protocols.

5th-level : protocols that use cryptography, 4th-level and 0th-level protocols,

and possibly also 1st-level or 2nd-level or 3rd-level protocols.

.

Fig. 12.1. Hierarchical protocol design

Many security protocols assume the existence of a PKI, a protocol
whereby each agent registers his private key with a certificate authority and
publishes his public key. Strictly speaking, a PKI pushes the protocols that
use it one level up in the hierarchy. Because most protocol designers consider
a PKI a very basic requirement, it seems fair to ignore this detail in assigning
a hierarchical level to protocols.

Designing security protocols hierarchically is risky. For example, design-
ing a second-level protocol considering that the goals of an underlying first-
level protocol are available requires a strong assumption that no interaction
between the two protocols can weaken the goals of either protocol. Recent
research denouncing attacks to multi-protocols confirms that assumption to
be strong indeed [66]. From the security standpoint, it seems preferable to
flatten the hierarchy opening up all black boxes, and hence design only first-
level protocols. This is simpler for few protocols, and avoids the danger of
missing potential interactions between the levels, but it becomes infeasible

12.1 Challenges for Formal Analysis 199

as many protocols are combined. Also, it is clear that the hierarchical design
can be engineered more simply. We remark that it is the protocol designer,
not the protocol analyser, who makes a choice between flat or hierarchical
design. The analyser merely ought to conform to the designer’s choice and to
verify whether that choice demands assumptions that can be met in practice.

Formalising the underlying protocols. Security protocols of higher lev-
els rely on underlying protocols to achieve their own goals. Precisely, they
rely on the goals achieved by the underlying protocols. Indeed, this hierar-
chical design strategy treats the protocols as black boxes, and considers only
the security properties they make available. Hence, a formalisation should be
found for the goals of the underlying protocols, which should be introduced
as assumptions rather than as actual goals to prove. This may not be obvi-
ous, depending on the adopted formalism, as a security property may have a
different formalisation as an assumption rather than as a goal. For example,
this will be the case with authentication; we have found simple ways to intro-
duce authentication, confidentiality and guaranteed delivery as assumptions
(§12.2.2). Other properties may require dedicated treatment.

Defining and formalising a threat model. As stated above (§3.9), the
standard model for first-level protocols is Dolev-Yao’s. It consists of a single
attacker who monitors the entire network, reuses the intercepted messages as
he pleases, and yet cannot break ciphertexts. This signifies that the attacker
can tamper with the transport protocol. It is not obvious how to define a
threat model for higher-level protocols in general. After significant experi-
ments, we defined the following model for second-level protocols; this may be
subject to further debate.

1. Any agent may impersonate the Dolev-Yao Spy. This is in the spirit
of Bella and Bistarelli’s threat model [30]. Modern technology and the
price of skills to master it have become increasingly cheaper. Hence, it
is realistic that any network agent hides malicious intentions for his own
sake, without interest in colluding with others or necessity to do so.

2. The Spy can arbitrarily establish channels by means of first-level protocols
and use them. For example, the Spy must be entitled to establish an SSL-
protected channel with anyone else and send arbitrary messages on it.

3. The Spy cannot tamper with the goals of first-level protocols. For example,
if a second-level protocol rests on an authenticated channel, then the Spy
cannot interpose. If that communication is confidential, then the Spy
cannot overhear.

In short, the last item assumes that a secure channel is always secure. This
correspondingly differs from the threat model for first-level protocols, which
sees the Spy tamper with the underlying transport protocol (she controls the
traffic). However, second-level protocols assume underlying first-level proto-
cols that have been formally verified.

200 12. Modelling Accountability

Once we have defined a threat model for second-level protocols, the main
task remains to formalise it within the formal method of choice. We have
easily managed this with our method (§12.2.3). Nevertheless, we remark that
defining a suitable threat model for higher-level protocols remains in general
an open problem.

12.2 Facing the Challenges

The Inductive Method had to be extended to face the three challenges raised
by accountability protocols. The process required much thought to even cope
with protocols of hierarchical level as low as the second, but the actual ex-
tensions turned out to be technically simple. Yet, we expect that the cur-
rent strategy to formalising second-level protocols can be easily reiterated
for higher-level protocols.

12.2.1 Formalising and Verifying the Novel Goals

We have found simple formalisations for the goals of non-repudiation and
certified e-mail delivery. Most importantly, we have also developed rather
simple methods for proving them.

The goals of non-repudiation are that at the end of a protocol ses-
sion the initiator has NRR and the responder has NRO. Given a generic
trace evs of the model for a generic non-repudiation protocol, say nrp,
the goals can be expressed respectively as NRR ∈ analz(knows A evs) and
NRO ∈ analz(knows B evs). If the protocol also is fair, then either both
goals are achieved or neither is. In consequence, the main goal of a fair non-
repudiation protocol in a very abstract version resembles a logical equiva-
lence. Figure 12.2 presents a template formalising fair non-repudiation at a
high level of abstraction.

If evs is a generic trace of nrp, NRO binds A to the sending of message
m and NRR binds B to the reception of message m, then

NRO ∈ analz(knows B evs) if and only if NRR ∈ analz(knows A evs)

Fig. 12.2. Abstract formalisation template for fair non-repudiation

Also the main goal of certified e-mail delivery can be abstractly expressed
as a logical equivalence. Given an e-mail m, a sender S and an intended
receiver R for m, it must be the case that R receives m if and only if S
obtains the receipt RR that R received m. Figure 12.3 presents a template
formalising certified e-mail delivery at a high level of abstraction, cedp being
the model for a generic protocol for certified e-mail delivery.

12.2 Facing the Challenges 201

If evs is a generic trace of cedp and RR is the return receipt for
e-mail m, then

m ∈ analz(knows R evs) if and only if RR ∈ analz(knows S evs)

Fig. 12.3. Abstract formalisation template for certified e-mail delivery

The specific events expressing in the preconditions the roles of initiator
(sender) or responder (receiver) played by the agents are abstracted away
from the abstract templates. Clearly, their forms depend on the specific pro-
tocol. Most importantly, the formalisations require no agent’s minimal trust
to include that the agent’s peer is not the Spy. It means that everyone is pro-
tected from anyone else who may try to subvert the protocol. The agent for
whom the guarantee is being designed may be required to be different from
the Spy; hence, she gets the guarantee at the price of acting legally himself.

Each implication of either logical equivalence is intended for a protocol
participant. For example, consider Figure 12.3. The left-to-right implication
reads as follows: if the receiver can derive the e-mail from the portion he sees
of the network traffic on evs, then the sender can derive the corresponding
return receipt from the portion he sees of the network traffic on evs. This
guarantee confirms that the sender never has a disadvantage over the receiver,
even if the receiver is able to derive the e-mail off-line from the analysed com-
ponents. Likewise, the right-to-left implication reads as follows: if the sender
can derive a return receipt, then the receiver can derive the corresponding
e-mail. When the sender submits his return receipt to a judge, this guarantee
counts as evidence against the receiver.

The certificates NRO, NRR and RR involve a digital signature or other
mechanism to prevent them from being forged. Such mechanisms are invisible
at the current level of abstraction. Should extra detail be required, an appeal
to the synth operator, which expresses message creation, would be of help.
Facts of the form NRO ∈ synth(analz(knows S evs)) could be used instead.

Given specific protocols, the abstract formalisations of the goals must
be refined. Despite their nice symmetry, the conclusions are weak because
the operator analz represents a potentially unlimited series of decryptions by
available keys. A stronger formalisation would replace the use of analz by
a reference to a specific protocol message that delivers the required item,
which an honest agent expects to be given directly. Let us consider the goal
in Figure 12.2, for example. We will see that the refined equivalence for Zhou-
Gollmann’s protocol adds knowledge of an extra message component, called
con K, to both sides. Likewise, let us consider the goal in Figure 12.3. The
refined left-to-right implication for the protocol by Abadi et al. will say that if
the receiver can compute the e-mail by an unlimited amount of work, then the
sender has been given the corresponding return receipt. The refined right-to-
left implication will say that if the sender can compute a return receipt by an

202 12. Modelling Accountability

unlimited amount of work, then the receiver has been given the corresponding
e-mail. Observe that we cannot express this refined formalisation properly
unless we know the precise format of the protocol messages.

Sometimes, we can prove stronger facts that no longer involve analz. For
example, here is an improved version of the right-to-left implication of certi-
fied e-mail delivery.

If a return receipt has been created at all, then the receiver has been
given the corresponding e-mail.

This version does not refer to the sender. We have strengthened the guarantee
while eliminating the need to reason about the sender’s knowledge.

The same technique can be applied to non-repudiation, but not to the left-
to-right implication of certified e-mail delivery because obviously the e-mail
m will have been created. Instead, we are forced to divide that implication
into two separate properties. One concerns the Spy and is proved by reasoning
about analz(knows Spy evs), which we know how to do. The other concerns
an honest agent, and states that if R is given the message (in the normal
way) then S has been given the receipt.

Accountability protocols typically use a key to protect their transmitted
message. Later, the responder (receiver) is given this key, so that she can
decrypt the message. Therefore, a statement such as the above, of the form
“agent has the message” can be replaced by “agent has the key to the mes-
sage.” We can also formalise a further guarantee, namely that the key never
reaches the Spy. This guarantee, which is of obvious value to both parties, is
formalised and proved much as it would be for a typical first-level protocol.

12.2.2 Formalising the Underlying Protocols

Formalising second-level protocols requires a formalisation of the goals of the
underlying first-level protocols as black boxes (§12.1.2). Therefore, the main
goals that we need to model are authentication and confidentiality. Other
minor goals, such as guaranteed delivery, may also be of interest. Below, we
describe how to model these properties abstractly in our inductive framework:
in other words, how to model channels secured by first-level protocols.

Authentication. The sender identity A of a Says A B X event cannot be
altered in the model once that event occurs in a trace. When we formalise a
first-level protocol, we must not allow an agent to inspect the sender identity;
the originator of a message remains unknown unless this is conveyed by the
message itself. As seen above (Chapter 8), we can formalise message recep-
tion using the Gets event, which does not mention the sender. The original
formulation [133] used the event Says A′ B X, taking care to assure that the
value of A′ (the true sender) was never used.

On the basis of these observations, one strategy to formalising authen-
tication as an assumption is to allow specific Says events among the rule

12.2 Facing the Challenges 203

preconditions, and explicit reference to the sender variable among the post-
conditions. For example, Says A B X would signify that B can authenticate
X as coming from A. This is the right way to model an authenticated chan-
nel that does not offer confidentiality, because the Spy can read X from the
event Says A B X.
Confidentiality. What if the channel must be confidential? We could extend
our definitional framework, introducing an additional event ConfSays A B X
for sending a message confidentially. This would require extending the defi-
nition of the function knows, which formalises each agent’s knowledge. The
new event ConfSays A B X would make X available only to the designated
recipient, B. If we include the event ConfSays A B X as the precondition of
a rule and allow other references to A, who is the true sender, then we have
modelled an authenticated, confidential channel. If we forbid other references
to A, then our confidential channel is unauthenticated. We performed some
experiments using the new event but abandoned them when we realised that
the original definitional framework was already sufficient to model secure
channels.

The Notes event formalises an agent’s changing his internal state. It has
the form Notes A X, where X is a message (perhaps the result of a com-
putation) being stored for future reference. We can formalise a confidential
transmission of a message X from A to B by the specific event

Notes A {|A,B, X|} (12.1)

Observe that the identities of the peers are stored with the actual message
by convention, as is demonstrated by rule DSLP1 in Figure 12.4. The figure
shows a demo second-level protocol whose first message is protected by the
security properties of a preestablished first-level protocol, for example, SSL.
Its inductive model is dslp. Event 12.1 must be included as a precondition of a
new inductive rule formalising reception of the confidential message, because
reception is in general not guaranteed even on a confidential channel. The
new reception rule must introduce the event

Notes B {|A,B,X|} (12.2)

signifying that B receives X confidentially, as demonstrated by rule Recep-
tion1st in Figure 12.4. Event 12.2 must be included as a precondition of the
rule formalising B’s actions upon reception of the confidential message X.
The message is therefore authenticated to arrive from the agent whose iden-
tity appears as first component of the noted message. This is demonstrated
by rule DSLP2 in Figure 12.4.

No further construct is necessary to model second-level protocols, except
for the additional rule Fake1st, which is explained in the next section. In par-
ticular, the Fake rule remains unvaried. Observe that, because of our specific
use of Notes to formalising the security properties, it is important to make
sure that no other use of that event involves messages beginning with two
agent names.

204 12. Modelling Accountability

1. A
SSL−→ B : A,Na

2. B −→ A : {|Na|}
sK−B

Nil :
[] ∈ dslp

Fake :
[[evsF ∈ dslp; X ∈ synth(analz(knows Spy evsF))]]
=⇒ Says Spy B X # evsF ∈ dslp

Fake1st :
[[evsF1 ∈ dslp; X ∈ synth(analz(knows Spy evsF1))]]
=⇒ Notes B {|Agent Spy, Agent B, X|} # evsF1 ∈ dslp

Reception :
[[evsR ∈ dslp; Says A B X ∈ set evsR]]
=⇒ Gets B X # evsR ∈ dslp

Reception1st :
[[evsR1 ∈ dslp; Notes A {|Agent A, Agent B, X|} ∈ set evsR1]]
=⇒ Notes B {|Agent A, Agent B, X|} # evsR1 ∈ dslp

DSLP1 :
[[evs1 ∈dslp; Nonce Na /∈ used evs1]]
=⇒ Notes A {|Agent A, Agent B, Nonce Na|} # evs1 ∈ dslp

DSLP2 :
[[evs2 ∈ dslp;

Notes B {|Agent A, Agent B, Nonce Na|} ∈ set evs2]]
=⇒ Says B A (Crypt (priSK B) (Nonce Na)) # evs2 ∈ dslp

Fig. 12.4. Example second-level protocol and corresponding inductive model

Guaranteed delivery. Other minor goals of first-level protocols can be for-
malised using similar techniques. For example, distribution of a session key to
a pair of agents can be formalised by an inductive rule that gives both agents
Notes events containing a key, with a precondition that the key is fresh. An-
other goal is guaranteed delivery, which can be implemented by sending a
message repeatedly until there is an acknowledgement. This goal can be eas-
ily formalised by introducing the event for receiving a message at the same
time as the event for sending it. It is even simpler just to introduce the former
event: the sender magically causes the message to reach the recipient. This
formalisation will be extensively used below (§13.2.1) to model the certified
e-mail protocol by Abadi et al. Observe that with either approach to guar-

12.2 Facing the Challenges 205

anteed delivery, no reception rule in the style of Reception1st (Figure 12.4)
is necessary.

Notes events are affected by a detail of our model, the set bad of compro-
mised agents. These are honest agents that have somehow come under the
control of the Spy, perhaps through a security lapse. The Spy knows their
private keys and can read their Notes. This detail is consistent with our use of
Notes above, since the Spy can be expected to grab anything that a compro-
mised agent receives, even via a secure channel. The model does not constrain
bad other than asserting that the Spy belongs to it.

It must be remarked that traditional first-level protocols are designed to
protect honest agents from the rest of the world, and a typical guarantee
will hold provided that both peers are uncompromised. However, an agent A
who executes a non-repudiation protocol or a certified e-mail protocol with B
requires the protocol goals especially if B is bad. In particular, B might even
be the Spy, who can send arbitrary messages built from known components.

Let us emphasise what we have provided here, namely a formalisation
of the security properties assumed by a second-level protocol. The specific
underlying first-level protocol that achieves those properties has not been
considered. Following a hierarchical verification strategy, it is irrelevant what
is hidden inside the black box (whether SSL or Kerberos, for example) that is
assumed to provide the goals. The same approach can be taken to formalising
the security properties assumed by protocols of hierarchical level higher than
the second.

12.2.3 Formalising a Threat Model

We have seen that the threat model formalised in the Inductive Method is a
Dolev-Yao Spy (§3.9). In principle, it is not obvious what the threat model
for second-level protocols is. We have defined what we believe is a realistic
one (§12.1.2), briefly recalled here.

1. Any agent may impersonate the Dolev-Yao Spy.
2. The Spy can arbitrarily establish channels by means of first-level proto-

cols and use them.
3. The Spy cannot tamper with the goals of first-level protocols.

Condition 1 is easy to implement in the Inductive Method. It may be
seen in Figure 12.4 that no rule is conditioned to agents other than the Spy.
So, its implementation does not influence the formalisation of a protocol.
However, it affects the formalisation of the guarantees, which must now be
proved admitting that the Spy can hide behind any of the involved peers.
This care, which we do take below, complicates the proofs with respect to
their earlier versions where we did not take it [35].

Conditions 2 and 3 together mean that the Spy can send messages at will
on channels she establishes using first-level protocols, but cannot interfere

206 12. Modelling Accountability

with any such channels established by other agents. Modelling first-level pro-
tocols using Notes events, as explained above, yields this threat model for
free — namely with no changes to our definitional framework — except for
the following detail.

The extra rule Fake1st is needed to allow the Spy to send arbitrary mes-
sages on channels established by first-level protocols (Figure 12.4). Indeed,
the rule introduces an event of the form

Notes B {|Spy, B, X|}

which formalises B’s reception of the Spy’s arbitrary message X on an au-
thenticated channel. This adds realism to the model. If an agent authenticates
himself to another, it does not mean that he will act honestly: he can still
attempt cheating by sending arbitrary messages to the other agent.

13. Verifying Two Accountability Protocols

A comparative verification of two important protocols designed using
the accountability strategy is presented. One protocol, due to Zhou and
Gollmann, is for non-repudiation and the other one, due to Abadi et
al., is for certified e-mail delivery.

An accountability protocol gives an agent lasting evidence, typically digitally
signed, about actions performed by his peer. Many authentication mecha-
nisms fail to meet this requirement: the reply to an encrypted nonce chal-
lenge proves an agent’s presence to the recipient but to nobody else. The
protocol should meet its objectives to an honest agent even if the peer mis-
behaves. This chapter presents a comparative analysis of a non-repudiation
protocol [171] and a certified e-mail protocol [4]. Both protocols have two
peers and a trusted third party TTP.

The results presented here supersede our previous work, especially for the
non-repudiation protocol [42], which was the first to be studied, though in
a limited model. It was only later that we developed the new specification
and verification methods described in the previous chapter. We first adopted
them to analyse the certified e-mail protocol [35], and then to reexamine the
non-repudiation protocol. For both protocols, it is now proved that an agent
who obeys the rules is also protected from a peer who is possibly cheating.
A more compact version of this conjunct analysis is also published [44].

We have found both protocols to be correct: they are fair and they deliver
valid evidence. More precisely, the non-repudiation protocol is fair in the
sense that the initiator gets non-repudiation of receipt if and only if the
responder gets non-repudiation of origin. Both pieces of evidence are proved
valid. Along with his evidence, the responder also gets the message that the
initiator intended to send him. In comparison, the certified e-mail protocol
achieves slightly weaker goals. It is fair in the sense that the initiator gets
non-repudiation of receipt (a “return receipt”) if and only if the responder
gets the e-mail. That receipt is proved valid. However, the responder gets no
evidence for non-repudiation of origin. The e-mail itself does not suffice for
this purpose.

The typical accountability setting sees the sender’s intention to transmit
a message m to B. She encrypts it using a symmetric key, K; the ciphertext
c = mK is her commitment to the session with the receiver. Recall that the

208 13. Verifying Two Accountability Protocols

private signature key of an agent X is indicated as sK−
X , while the signature

of a message y by key sK−
X is {|y|}sK−X . The public encryption key of an agent

X is indicated as eKX , while the encryption of a message y by key eKX

is {|y|}eKX
. Our notation (§3.6) makes no distinction between the operations

of symmetric encryption, asymmetric encryption and signature, because the
type of key suffices to discern.

The structure of this chapter is simple. First, we present the non-
repudiation protocol, its model and its verified properties (§13.1). Then, we
do the same with the certified e-mail protocol (§13.2). Finally, we compare
and contrast them (§13.3).

13.1 The Non-repudiation Protocol

The non-repudiation protocol (Figure 13.1) uses a lightweight TTP whose ef-
fort is independent of the size of the transmitted message. A unique label,
L, identifies the session between A and B. It concerns two types of evidence.
Non-repudiation of origin (NRO) proves the participation of the initiator A,
while non-repudiation of receipt (NRR) proves the participation of the re-
sponder B. Flags such as fnro express the non-repudiation meaning of a
certificate.

Abbreviations

c = mK

NRO = {|fnro, B, L, c|}
sK−A

NRR = {|fnrr, A, L, c|}
sK−B

sub K = {|fsub, B, L, K|}
sK−A

con K = {|fcon, A, B, L, K|}
sK−

TTP

Steps

1. A −→ B : fnro, B, L, c,NRO

2. B −→ A : fnrr, A, L,NRR

3. A −→ TTP : fsub, B, L, K, sub K

4. B
FTP←− TTP : fcon, A, B, L, K, con K

5. A
FTP←− TTP : fcon, A, B, L, K, con K

Fig. 13.1. Non-repudiation protocol by Zhou and Gollmann

13.1 The Non-repudiation Protocol 209

The protocol is easy to describe. First (step 1), A picks a symmetric
key K and a label L, and encrypts m with K to form c. Then, A signs
fnro, B, L, c to yield NRO, which she sends to B. In response (step 2), B
verifies A’s signature, signs fnrr, A, L, c and sends the resulting NRR to A.
Then (step 3), A lodges K with TTP by sending sub K, which is fsub, B, L,K
signed with her private signature key.

If TTP can verify A’s signature, it signs fcon, A, B, L, K producing con K,
which it makes available in its public directory. This step binds the key K to
the session between A and B labelled L. Finally (steps 4 and 5), A and B
download con K from TTP using the File Transfer Protocol (FTP); the pro-
tocol assumes that this download will eventually succeed.

The authors state that “In practice, we will not want TTP to store message
keys forever. We could set a deadline T to limit the time con K and K can be
accessed by the public” [171, §5.3]. This statement only implicitly addresses
the question of an off-line audit trail, which might be considered obligatory.
Without a full audit trail, the protocol suffers a form of replay attack: the
initiator can reuse the supposedly unique session label, using evidence from a
past run to “prove” the responder’s participation in a recent session [87]. This
attack seems unrealistic, as auditing is notoriously fundamental to security.
Gollmann has rejected it in a private communication. as is based on traces,
our model assumes that a full audit trail is always available, and hence will
not signal irregularities of this form.

The protocol aims at providing each party with evidence to prove the
other’s participation. The evidence for A consists of NRR and con K, while
that for B consists of NRO and con K. Making con K part of the evidence
is particularly important: it assures fairness, since TTP releases this item to
both parties simultaneously.

Let us informally analyse how to resolve disputes. If A holds con K
and NRR, then she has completed a run with B, who has accepted the com-
mitment c and should be able to download the decryption key from TTP.
Similarly, if B holds con K and NRO, then A cannot deny having sent c as a
commitment bound to label L. Of course, such arguments are unconvincing
as they stand; we need formal verification.

13.1.1 Model

The protocol model is the set of traces zg, whose inductive definition is rep-
resented in Figure 13.2. It can be found in file ZhouGollmann.thy (Figure 3.1).
Rules Nil and Fake are standard. Rules ZG1, ZG2, ZG3 and ZG4 respectively
model the legitimate protocol steps. In particular, to initiate the protocol with
B, agent A chooses a fresh label in rule ZG1. “Labels have to be unique to
create the link between commitment and key” [171, §5.2], so we decide to
model them as random numbers, namely as nonces. Therefore, our labels are
independent of the messages — we do not study more detailed computations
of labels. Because A sends the message m in an encrypted form, she must

210 13. Verifying Two Accountability Protocols

choose a cryptographic key. Rule ZG1 leaves her free to choose any key, even
an old one; we merely assume that she cannot pick asymmetric keys.

We highlight the important certificates by defining them in the premises
using equations, and using the names so defined in the conclusions. When
a certificate is defined in the premises of a rule, the rule only applies for a
certificate of the specified form; informally, the agent verifies it. For example,
B must check that NRO in rule ZG2 is signed by A in order to confirm that
she is the sender of the message just received. Likewise, A must check that
NRR in rule ZG3 is signed by B.

Rule ZG4 models TTP’s preparation of the key confirmation con K. TTP
verifies the signature on sub K to confirm the identities of the other agents.
All the components needed to verify the signature are available. The instal-
lation of con K in TTP’s public directory is modelled by a Notes TTP event.
Also the Spy must be able to download it, so two events are needed. Be-
cause TTP is uncompromised, the Notes TTP event keeps con K from the
Spy, while a Says TTP Spy event explicitly gives it to her. This rule termi-
nates the protocol model: it is unnecessary to formalise the peers’ retrieval
of con K.

13.1.2 Verification

For verifying this protocol, an additional definition is necessary: the set of
broken agents. A compromised agent’s digital signatures are worthless, but
the Spy’s own signatures must be considered valid. The set broken therefore
includes all compromised agents other than the Spy.

broken , bad \{Spy}

If an agent is broken, then the Spy has his keys and can impersonate him
freely, but the agent certainly is not the Spy. Conversely, if an agent is unbro-
ken, then the Spy cannot impersonate him, but he can be the Spy himself. He
can misbehave sending arbitrary messages as is appropriate for accountability
protocols. Hence, with accountability protocols, an agent can assume his peer
to be unbroken as part of his minimal trust. This is an important element of
the threat model advanced in the previous chapter. Classical goals such as
confidentiality are less relevant in this context. For example, it is emblematic
that in message 3 agent A actually broadcasts the key K.

In this section, evs is a generic trace of the formal protocol model zg.

Proving validity of evidence. Let us start with evidence con K and
sub K. The relevant fragments of the proof script can be found in Ap-
pendix D.2. If con K exists at all (as formalised by the function used),
then TTP has stored it on the FTP site, where it is available to A and
B (Lemma 13.1.1). This is as expressive as can be because our current model
purposely does not include the actual FTP-get operations. Either agent, pos-
sessing con K, can use this guarantee to show that the peer has access to

13.1 The Non-repudiation Protocol 211

Nil :
[] ∈ zg

Fake :
[[evsF ∈ zg; X ∈ synth (analz (knows Spy evsF))]]
=⇒ Says Spy B X # evsF ∈ zg

Reception :
[[evsR ∈ zg; Says A B X ∈ set evsR]] =⇒ Gets B X # evsR ∈ zg

ZG1 :
[[evs1 ∈ zg; Nonce L /∈ used evs1; c = Crypt K (Number m);

K ∈ symKeys;
NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, c|}]]

=⇒ Says A B {|Number f nro, Agent B, Nonce L, c, NRO|} # evs1 ∈ zg

ZG2 :
[[evs2 ∈ zg;

Gets B {|Number f nro, Agent B, Nonce L, c, NRO|} ∈ set evs2;
NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, c|};
NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, c|}]]

=⇒ Says B A {|Number f nrr, Agent A, Nonce L, NRR|} # evs2 ∈ zg

ZG3 :
[[evs3 ∈ zg; c = Crypt K m; K ∈ symKeys;

Says A B {|Number f nro, Agent B, Nonce L, c, NRO|} ∈ set evs3;
Gets A {|Number f nrr, Agent A, Nonce L, NRR|} ∈ set evs3;
NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, c|};
sub K = Crypt (priK A) {|Number f sub, Agent B, Nonce L, Key K|}]]

=⇒ Says A TTP {|Number f sub, Agent B, Nonce L, Key K, sub K|}
evs3 ∈ zg

ZG4 :
[[evs4 ∈ zg; K ∈ symKeys;

Gets TTP {|Number f sub, Agent B, Nonce L, Key K, sub K|} ∈ set evs4;
sub K = Crypt (priK A) {|Number f sub, Agent B, Nonce L, Key K|};
con K = Crypt (priK TTP) {|Number f con, Agent A, Agent B,

Nonce L, Key K|}]]
=⇒ Says TTP Spy con K

Notes TTP {|Number f con, Agent A, Agent B, Nonce L, Key K, con K|}
evs4 ∈ zg

Fig. 13.2. Inductive model of the non-repudiation protocol

212 13. Verifying Two Accountability Protocols

con K, and therefore to the key K. Since con K is equally available to both
parties, this lemma also expresses an aspect of fairness. Technically speak-
ing, it has the form of an authenticity guarantee, so the proving experience
accumulated thus far is useful.

Theorem 13.1.1 (ZG con K validity). If con K exists on evs and

con K =
Crypt(priK TTP){|Number fcon,Agent A,AgentB,Nonce L,Key K|}

then evs contains

Notes TTP {|Number fcon,AgentA,AgentB,Nonce L, Key K, con K|}.

The proof is a simple induction: since con K is signed by TTP, who is uncom-
promised, a regularity lemma tells Isabelle’s simplifier that it is an integral
certificate. Hence, rule ZG4 must have been executed. The proof script is six
lines long. The first three lines, which are routine, set up the induction. The
fourth line is also routine, applying theorem ZG ZG2 msg in parts spies

(omitted here), causing Isabelle to note that the encrypted message is avail-
able to the Spy as it was sent in the network. Then, it simplifies all subgoals
arising from the induction. Only two subgoals survive the simplification. They
are proved routinely by blast with the help of technical lemmas available in
Message.thy (Figure 3.1) concerning the relation between fake messages and
the parts primitive.

An analogous theorem can be proved about sub K. If TTP receives it
within an instance of message 3, then it was sent by A (Theorem 13.1.2).
Its conclusion holds even if A is the Spy, which is allowed by the assumption
that A is unbroken.

Theorem 13.1.2 (ZG sub K validity). If A in unbroken and

sub K = Crypt(priK A){|Number fsub,Agent B,Nonce L,Key K|}

and evs contains

Gets TTP {|Number fsub,AgentB,Nonce L, Key K, sub K|}

then evs contains

Says A TTP {|Number fsub,AgentB,Nonce L,Key K, sub K|}.

The proof method is new. Thanks to the reception invariant, someone sent
that instance of message 3 to TTP. Then, the assumption that A is unbroken
produces two subgoals: one has A uncompromised, the other has her the Spy
(Figure 13.3).

The first subgoal can be solved by a conventional authenticity theorem
(ZG sub K validity good, omitted here) stating that because sub K is in the
traffic, and because it appears to have originated with an uncompromised A,
it did. The second can be solved by a less conventional, weaker result that

13.1 The Non-repudiation Protocol 213

1. [[evs ∈ zg;
Says Aa TTP
{|Number f_sub, Agent B, Nonce L, Key K,

Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|}|}
∈ set evs;
A 6∈ bad]]

=⇒ Says A TTP
{|Number f_sub, Agent B, Nonce L, Key K,

Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|}|}
∈ set evs;

2. [[evs ∈ zg;
Says Aa TTP
{|Number f_sub, Agent B, Nonce L, Key K,

Crypt (priK Spy) {|Number f_sub, Agent B, Nonce L, Key K|}|}
∈ set evs]]

=⇒ Says Spy TTP
{|Number f_sub, Agent B, Nonce L, Key K,

Crypt (priK Spy) {|Number f_sub, Agent B, Nonce L, Key K|}|}
∈ set evs;

Fig. 13.3. Proving validity of sub K for the non-repudiation protocol

makes no assumption on A. It states that sub K originated either with A or
with the Spy (Lemma 13.1.1). The proof is trivial induction since only the
Spy would use another agent’s key. It can be seen that the form of all message
components but the last one does not need to be specified.

Lemma 13.1.1 (ZG sub K sender). If evs contains

Says A′ TTP {|f, b, l, k, Crypt(priK A) X|}

then A′ is either A or the Spy.

The same method can be used to prove validity of the main pieces of
evidence. The relevant fragments of the proof script can be found in Ap-
pendix D.1. In particular, NRO is valid (Theorem 13.1.3).

Theorem 13.1.3 (ZG NRO validity). If A is unbroken and

NRO = Crypt(priK A){|Number fnro,Agent B,Nonce L, c|}

and evs contains

Gets B {|Number fnro,AgentB,Nonce L, c,NRO|}

then evs contains

Says A B {|Number fnro,Agent B,Nonce L, c,NRO|}.

The three theorems seen so far confirm validity of B’s evidence. If
he exhibits con K, then by Theorem 13.1.1 it originated with TTP. This
implies that TTP received sub K inside a valid instance of message 3

214 13. Verifying Two Accountability Protocols

(ZG Notes TTP imp Gets, omitted here), because TTP only works reli-
ably. Finally, by Theorem 13.1.2, we have that it was A who submitted the
key K bound to the label L. If B also exhibits NRO, then by Theorem 13.1.3,
he can assert that A submitted the commitment c bound to the label L. The
label binds the commitment to the key; hence, the theorems together confirm
A’s intention to send the plaintext message contained in c.

Turning to A’s evidence, we can prove that NRR is valid (Theorem 13.1.4)
in a similar fashion. Precisely, any instance of NRR that appears to come from
B actually did. As usual, the assumption that B is unbroken allows him to
be the Spy.

Theorem 13.1.4 (ZG NRR validity). If B is unbroken and

NRR = Crypt(priK B){|Number fnrr,Agent A,Nonce L, c|}

and evs contains

Gets A {|Number fnrr,AgentA,Nonce L,NRR|}

then evs contains

Says B A {|Number fnrr,AgentA,Nonce L,NRR|}.

We now have all guarantees confirming validity of A’s evidence: con K
and NRR. When A exhibits NRR, she can assert by Theorem 13.1.4 that B
holds the ciphertext c. When A exhibits con K, she shows by Theorem 13.1.1
that it was available for B to download from TTP. Therefore, B can have
access to m.

Proving fairness. The fairness guarantees protect an agent who follows
the protocol from one who does not. The agent receiving the guarantee must
be uncompromised, but no assumption is made about the peer. Since Theo-
rem 13.1.1 already states that con K is equally available to both parties, we
only have to prove fairness for NRO and NRR. For the sake of readability
we prefer to word the fact “X ∈ used evs” as “X exists on evs” in this pre-
sentation, while the relevant fragments of the proof script can be found in
Appendix D.3.

Here is a guarantee of fairness for B: if NRR exists at all, then B,
who must be uncompromised, holds NRO (Theorem 13.1.5). The proof is
a straightforward induction.

Theorem 13.1.5 (ZG B fairness NRR). If B is uncompromised, NRR
exists on evs and

NRR = Crypt(priK B){|Number fnrr,Agent A,Nonce L, c|}

and

NRO = Crypt(priK A){|Number fnro,Agent B,Nonce L, c|}

then evs contains

13.2 The Certified E-mail Protocol 215

Gets B {|Number fnro,AgentB,Nonce L, c,NRO|}.

Fairness for A has a slightly different form: if con K and NRO exist, then
A holds NRR (Theorem 13.1.6). It can be seen how con K gives fairness
to A, who otherwise would be at a disadvantage because the first message
gives evidence to B.

Theorem 13.1.6 (ZG A fairness NRO). If A is uncompromised, con K
exists on evs and

con K =
Crypt(priK TTP){|Number fcon,Agent A,AgentB,Nonce L,Key K|}

and

NRR = Crypt(priK B){|Number fnrr,Agent A,Nonce L, c|}

and

NRO = Crypt(priK A){|Number fnro,Agent B,Nonce L, c|}

and evs is such that

NRO ∈ parts(knows Spy evs)

then evs contains

Gets A {|Number fnrr,AgentA,Nonce L,NRR|}.

The proof is much more complicated than that of the corresponding prop-
erty for B. It uses a lemma stating that A only sends message 3 after she
has received NRR (ZG sub K imp NRR, omitted here). She recognises the
correct NRR by the label L, which she is required to choose uniquely to iden-
tify the transaction. This uniqueness is important. If A attempts to cheat by
reusing transaction identifiers, as suggested by Gürgens and Rudolph [87],
she runs the risk of accepting the wrong transaction.

An agent can assume his peer to be unbroken as part of his minimal trust.
It is perfectly realistic for accountability protocols, as unbroken agents can be
the Spy. The assumptions of the guarantees presented so far can be verified
by their intended beneficiaries. In consequence, the non-repudiation protocol
makes its goals of validity of evidence and fairness available to its peers.

13.2 The Certified E-mail Protocol

Abadi et al. [4] have designed a realistic protocol for certified e-mail delivery.
No public-key infrastructure is necessary: TTP has signature and encryp-
tion keys, but other agents merely share a password with TTP. Agent R’s
password is indicated pwdR. In common with the previous protocol, TTP is
lightweight and its effort is independent of the e-mail size; moreover, this

216 13. Verifying Two Accountability Protocols

TTP is stateless. A challenge-response mechanism authenticates the receiver
to the sender, who must agree beforehand on some acknowledgement function
linking a challenge q to its response r.

As in the non-repudiation protocol, the sender forms a commitment by
encrypting his e-mail with a symmetric key, K. He attaches K, encrypted with
TTP’s public encryption key. The recipient forwards the message to TTP in
order to obtain K. (In the non-repudiation protocol, the sender lodges the
key directly with TTP.) TTP releases the key and simultaneously releases a
certificate documenting the transaction to the sender.

Abbreviations

c = mK

hS = Hash(cleartext , q, r, c)

hR = Hash(cleartext , q, r, c)

S2TTP = {|S,BothAuth, K, R, hS |}eKTTP

RR = S2TTP
sK−

TTP

Steps

1. S −→ R : TTP, c,BothAuth, cleartext , q, S2TTP

2. R
SSL−→ TTP : S2TTP, pwdR, hR

3. TTP
SSL−→ R : K, hR

4. TTP −→ S : RR

Fig. 13.4. Certified e-mail protocol by Abadi et al.

We present the full version of the protocol (Figure 13.4), where the receiver
authenticates to both the sender and TTP. This is the strongest authenti-
cation option, signaled by tag BothAuth. “The part cleartext is a header
that asks R to read the certified e-mail, perhaps explaining what is in the
message”[4, §3.2]. In step 1, the sender S sends the receiver R the encrypted
e-mail c, a challenge q, and a certificate for TTP, called S2TTP . The cer-
tificate is encrypted under TTP’s public encryption key and contains two
important components: the symmetric key K that protects c, and a hash
linking c to the required response, r. Recall that R and S must have already
agreed out of band on a query-response mechanism.

In step 2, R computes the response r to the query q and includes the
received ciphertext c to build the hash hR, which he sends along with the
received certificate and his password (pwdR) to TTP on a secure channel. The
authors state that security here means confidentiality and authentication, and
that “in practice, such a channel might be an SSL connection” [4]. They also

13.2 The Certified E-mail Protocol 217

require guaranteed delivery, which can be implemented by sending a message
repeatedly until it is acknowledged [70].

In step 3, TTP decrypts and verifies the received certificate. Then, TTP
authenticates R by the password and — to check that S and R agree on the
authentication mechanism — verifies that hS found inside the ticket matches
hR. If satisfied, TTP replies to R, delivering the key found inside the ticket.
This reply goes along the secure channel created in step 2.

In step 4, TTP sends a signed return receipt RR to S. Observe that RR
is essentially non-repudiation of receipt (NRR). TTP must take this step
jointly with the previous one, so as to be fair to both sender and receiver. If
the certificate received inside the return receipt matches S’s stored certificate,
then S authenticates R.

In both protocols, TTP sees the symmetric key K, but not the plaintext
message m. This reduces the trust in TTP, which cannot disclose the e-mails
even if compromised. However, a misbehaving TTP could eavesdrop on the
initial message from S to R, taking the ciphertext mK , which he could decrypt
once he knows K.

The protocol’s use of encryption should prevent spies from learning m.
Most importantly, the protocol “should allow a sender, S, to send an e-
mail message to a receiver, R, so that R reads the message if and only if S
receives the corresponding return receipt” [4, §2]. This objective is similar to
that of Zhou and Gollmann, but weaker. The responder does not receive non-
repudiation of origin (NRO), namely evidence that the initiator intended to
send him the message. Nenadic̀ et al. [127] have recently published an e-mail
protocol that provides non-repudiation of both origin and receipt.

13.2.1 Model

The protocol model is the set of traces aghp (the authors’ initials), whose in-
ductive definition is in Figure 13.5. It can be found in file CertifiedEmail.thy

(Figure 3.1). It is built according to the template given in the previous
chapter in Figure 12.4. We do not model weaker authentication options than
BothAuth. For authentication, R must be able to respond to a query q from S.
The two agents should have agreed off-line on a series of challenge-response
pairs. We choose the following implementation of responses, which allows
the Spy to generate the response if R is compromised — though not if S is
compromised. It is a function returning a message

response : [agent, agent, nat] −→ msg

defined as

response S R q , Hash{|Agent S, Key (shrK R),Nonce q|}

Message transmission over a secure channel, which is authenticated, con-
fidential and delivery-guaranteed, is formalised by a Notes event of the

218 13. Verifying Two Accountability Protocols

form 12.2 discussed above (§12.2.2). Rule Fake1st lets the Spy open a se-
cure channel to TTP and send a fake message. Rule AGHP1 represents the
first protocol message. In rule AGHP2, a Notes event represents R’s message
to TTP; here, function RPwd indicates the receiver’s password. Because mes-
sages 2 and 3 travel over guaranteed delivery channels, the protocol model
does not require a rule of the form of Reception1st (§12.2.2). Hence, the sub-
jects of the Notes events in rules AGHP2 and AGHP3 respectively are the
intended recipients of the messages (TTP and R respectively).

Steps 3 and 4 must take place at the same time, so they are formalised by
the single rule AGHP3. TTP checks R’s password to authenticate the sender
of message 2, but, regardless, he must reply along the same secure channel.
The replies to both S and R are delivery-guaranteed, so the rule introduces
an appropriate Notes event for the receiver, and a double Says-Gets event for
TTP’s transmission to the sender. The Says event may seem unnecessary, but
it preserves a feature of our model: every Gets event has a matching Says
event.

13.2.2 Verification

We focus on the accountability properties, omitting the classical ones on
confidentiality and authentication, which conform to the numerous examples
seen so far. Likewise, obvious regularity lemmas hold for the private signature
or encryption keys of uncompromised agents.

The guarantees presented here supersede those published some time
ago [35]. They together confirm the main goal of the protocol, that the sender
S gets the return receipt if and only if the receiver R gets the e-mail. Here,
evs is a generic trace of the formal protocol model aghp. As with the non-
repudiation protocol, “X ∈ used evs” is worded as “X exists on evs.”

Proving validity of evidence. This protocol offers no non-repudiation of
origin to the receiver. The main guarantee of validity of S’s evidence says
that if the return receipt exists then R has obtained the cryptographic key
necessary to retrieve the e-mail (Theorem 13.2.1). This guarantee is for S: he
can check the form of S2TTP as he created it.

Theorem 13.2.1 (AGHP RR validity). If R is not the Spy, RR exists
on evs and

RR = Crypt(priSK TTP) S2TTP

and

S2TTP = Crypt(pubEK TTP){|Agent S, Number AO ,Key K, AgentR, hs|}

and

hs = Hash{|Number cleartext ,Nonce q, r, c|}

then evs contains

13.2 The Certified E-mail Protocol 219

Nil :
[] ∈ aghp

Fake :
[[evsF ∈ aghp; X ∈ synth(analz(knows Spy evsF))]]
=⇒ Says Spy B X # evsF ∈ aghp

Fake1st :
[[evsF1 ∈ aghp; X ∈ synth(analz(knows Spy evsF1))]]
=⇒ Notes TTP {|Agent Spy, Agent TTP, X|} # evsF1 ∈ aghp

Reception :
[[evsR ∈ aghp; Says A B X ∈ set evsR]] =⇒ Gets B X # evsR ∈ aghp

AGHP1 :
[[evs1 ∈ aghp; Key K /∈ used evs1; K ∈ symKeys;

Nonce q /∈ used evs1;
hs = Hash {|Number cleartext, Nonce q, response S R q,

Crypt K (Number m)|};
S2TTP = Crypt (pubEK TTP) {|Agent S, Number BothAuth, Key K,

Agent R, hs|}]]
=⇒ Says S R {|Agent S, Agent TTP, Crypt K (Number m),

Number BothAuth, Number cleartext, Nonce q, S2TTP|}
evs1 ∈ aghp

AGHP2 :
[[evs2 ∈ aghp; TTP 6= R;

Gets R {|Agent S, Agent TTP, c, Number BothAuth,
Number cleartext, Nonce q, S2TTP|} ∈ set evs2;

hr = Hash {|Number cleartext, Nonce q, response S R q, c|}]]
=⇒ Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr|}

evs2 ∈ aghp

AGHP3 :
[[evs3 ∈ aghp; TTP 6= R; hs = hr; K ∈ symKeys;

Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr|}
∈ set evs3;

S2TTP = Crypt (pubEK TTP) {|Agent S, Number BothAuth, Key K,
Agent R, hs|}]]

=⇒ Notes R {|Agent TTP, Agent R, Key K, hr|} #
Gets S (Crypt (priSK TTP) S2TTP) #
Says TTP S (Crypt (priSK TTP) S2TTP)

evs3 ∈ aghp

Fig. 13.5. Inductive model of the certified e-mail protocol

220 13. Verifying Two Accountability Protocols

Notes R {|AgentTTP,Agent R,Key K, hr |}.

The inductive proof is lengthy (eleven commands), with separate consider-
ation of four cases of the induction. Nothing inherently difficult is involved;
the complicated form of the assertion causes Isabelle’s automatic provers to
require more guidance than usual.

Proving fairness. Theorem 13.2.1 seen above expresses fairness for the re-
ceiver. Its interpretation in terms of goal availability is subtle, as the receiver
can verify the form of S2TTP only in the case of disputes. However, fairness
can be equally considered available to him: if the receiver conjectures that
the return receipt binding him exists, then he is entitled to obtain the corre-
sponding decryption key. As seen in the previous chapter, a fairness guarantee
for an agent must necessarily insist on the very piece of evidence meant for
the agent’s peer (which often only the peer can verify) and introduce the
other piece of evidence meant for the agent.

Before proceeding to the fairness guarantee for the sender, we need to
introduce a lemma. It concerns S2TTP , the certificate that the sender
transmits to TTP in the first protocol message. The lemma says that any-
thing matching the form of S2TTP can only arise from a valid instance of
the first protocol message, provided it carries a confidential session key K
(Lemma 13.2.1). This assumption can be conventionally relaxed by the ap-
propriate confidentiality argument, which we omitted.

Lemma 13.2.1 (AGHP S2TTP sender). If evs is such that

Key K /∈ analz(knows Spy evs)

and S2TTP exists on evs and

S2TTP = Crypt(pubEK TTP){|AgentS, Number AO ,Key K, Agent R, hs|}

then, for some m, ctxt and q, evs contains

Says S R {|AgentS, Agent TTP,Crypt K(Number m),Number AO ,

Number ctxt ,Nonce q, S2TTP |}

and

hs = Hash{|Number ctxt ,Nonce q, response S R q, Crypt K(Number m)|}.

The proof is straightforward: the Spy needs to know the session key K before
he can use it to make a fake version of S2TTP . However, once again the
proof script requires some guidance for Isabelle’s provers.

The fairness guarantee for the sender is expressed as two theorems: one
for when the receiver is the Spy and one for an honest receiver. The sender
does not have to know which case applies, but only needs to be able to check
the theorem assumptions in practice.

In the former case (Theorem 13.2.2), the session key clearly is not confi-
dential. The main premise is that the sender has issued message 1 (with the

13.2 The Certified E-mail Protocol 221

given value of S2TTP). The conclusion is that the receiver is compromised;
but even in this case, the sender gets the return receipt.

Theorem 13.2.2 (AGHP S fairness bad R). If S is not the Spy and

S2TTP = Crypt(pubEK TTP){|AgentS, Number AO ,Key K, Agent R, hs|}

and

RR = Crypt(priSK TTP) S2TTP

and evs contains

Says S R {|Agent S, AgentTTP,Crypt K(Number m),Number AO ,

Number cleartext ,Nonce q, S2TTP |}

and is such that

Key K /∈ analz(knows Spy evs)

then R is compromised and evs contains

Gets S RR.

The proof script is a simple induction except for the treatment of the third
protocol message, when TTP replies to the sender and to the receiver. The
proof of this subgoal is rather subtle, resembling a confidentiality argument.
Any assertion of the form “if the Spy knows K then . . . ” is a confidentiality
property. In particular, if the conclusion simply is “False” then the assertion
is equivalent to saying that the key is confidential. Here, we get a case analysis
on whether the Spy knows the key or not, and in the latter case we appeal
to Lemma 13.2.1 and to a unicity guarantee (AGHP Key unique, omitted
here). Even with this complicated argument, Isabelle’s provers do much of the
work, and the treatment of the third message consists of only five commands.

The other case of the fairness argument for the sender is when the receiver
is uncompromised. This time, the receiver legitimately gets the session key
to decrypt the e-mail. The conclusion is unvaried, that the sender gets the
return receipt (Theorem 13.2.3).

Theorem 13.2.3 (AGHP S guarantee). If S is not the Spy and

S2TTP = Crypt(pubEK TTP){|AgentS, Number AO ,Key K, Agent R, hs|}

and

RR = Crypt(priSK TTP) S2TTP

and evs contains

Says S R {|Agent S, AgentTTP,Crypt K(Number m),Number AO ,

Number cleartext ,Nonce q, S2TTP |} and
Notes R {|AgentTTP,Agent R,Key K, hs|}

222 13. Verifying Two Accountability Protocols

then evs contains

Gets S RR.

In this case, the proof script is surprisingly short. The argument for the
crucial third message consists of a single prover call to blast, invoking four
available results. Two are Lemma 13.2.1 and Theorem 13.2.2. Another says
that whatever is sent on an SSL channel (ZG Notes SSL imp used, omitted
here) is a used component. Finally, a unicity theorem is needed about mes-
sage 1, established using the fresh session key as a pivot (ZG Key unique,
omitted here). Remarkably, Isabelle has to cope with a rather intricate proof
tree.

Also this fairness guarantee must be interpreted with care in terms of
goal availability. The Notes R fact is, rather than an assumption that S must
be able to verify, the necessary conjecture that S makes to conclude that he
would get his own piece of evidence. In consequence, fairness is available to
the sender.

We have emphasised throughout that each proof about the certified e-
mail protocol relies on assumptions that the beneficiary of the corresponding
theorem can check. So, it can be concluded that the protocol makes its goals
available to its peers. However the proof development process highlighted that
an anomalous execution of the protocol is possible. The receiver can initiate
a session from step 2 by quoting an arbitrary sender, and by building two
identical hashes. The session will terminate successfully and the sender will
get evidence that an e-mail he has never sent has been delivered. This is due
to the fact that the protocol uses no technique to authenticate the sender to
TTP. The anomaly can be addressed by inserting the sender’s password into
the certificate S2TTP created at step 1, so that the receiver cannot forge it.
But passwords are weak secrets.

Another flaw is that the sender has no defence against the receiver’s claim
that the message was sent years ago and is no longer relevant, which would
devalue the return receipt. This attack works in both directions: the receiver’s
claim might be truthful and not believed. Even if the sender includes a date in
the message, he cannot prove that the date is accurate. The obvious solution
is for TTP to include a timestamp in the return receipt.

13.3 Discussion

There exist two pen-and-paper analyses of Zhou and Gollman’s protocol.
One, by the designers themselves [168], uses the SVO authentication logic;
the other, by Schneider [145], uses rank functions and CSP. An automated
analysis by Gürgens and Rudolph [87] has found replay attacks under the
assumption that TTP does not maintain an audit trail. None of these analyses
was directly useful to us, as our approaches appear to be rather dissimilar. As

13.3 Discussion 223

for the protocol by Abadi et al., our findings appear to be coherent with those
by Abadi and Blanchet on the same protocol [2], which were developed using
an ad hoc proof tool, ProVerif [51]. Shmatikov and Mitchell use a finite-state
checker for protocols that are similar to ours [147].

We have developed simple formalisations of non-repudiation and certi-
fied e-mail delivery, along with simple proof methods relying on induction.
The formalisation of a distrusted peer differs in the two protocols. With the
non-repudiation protocol we had to assume the peer to be unbroken because
that protocol is based on digital signatures, which are worthless if the peer’s
private keys have been disclosed. Both protocols make their goals available
to their peers, but the certified e-mail protocol is based upon weaker mech-
anisms: passwords and previously agreed responses. Although this was an
explicit choice of the designers, it must be kept in mind when interpreting
the theorems proved in our model. Guarantees based on strong cryptography
are sounder than those based on weak passwords.

Our findings confirm that both the non-repudiation protocol and the cer-
tified e-mail protocol achieve their stated goals. All evidence appears to be
valid: sufficient to hold an agent accountable for participation. The non-
repudiation protocol delivers evidence to its participants, binding each other’s
participation. It is fair: each party receives evidence if and only if the other
party does. The certified e-mail protocol is fair in the sense that the initiator
gets non-repudiation evidence — the return receipt — if and only if the re-
sponder gets the e-mail. Interpreting fairness in terms of goal availability was
subtler with the latter protocol. Evidence in the non-repudiation protocol
consists of digital signatures that anyone can verify upon reception. By con-
trast, evidence in the certified e-mail protocol comprises the session key used
to build the commitment and the certificate S2TTP encrypted with TTP’s
public key. Assumptions on such message components must be interpreted as
conjectures that an agent makes to find out whether he would get what he
seeks should those conjectures hold.

Comparing the two protocols, the e-mail one demands less of the trusted
third party and it uses much weaker cryptographic mechanisms, with no
public-key infrastructure. It offers correspondingly weaker guarantees: the
responder gets no non-repudiation evidence, and even the theorems we can
prove must be interpreted with an awareness of the weak cryptography.

A reviewer of one of our earlier papers suggested that it is interesting to see
what happens if a protocol is deliberately weakened. For example, suppose
that the receiver of the certified e-mail protocol forgets to send message 2
over the SSL protocol and sends it over a conventional transport protocol.
Modelling this variant is straightforward: replace the event

Notes TTP {|AgentR,AgentTTP, S2TTP, Key(RPwdR), hr |}

in rule AGHP2 with the event

Says R TTP {|S2TTP, Key(RPwdR), hr |}

224 13. Verifying Two Accountability Protocols

and fix the corresponding premise in rule AGHP3 accordingly. An attempt to
reexecute our proof script soon reveals that the receiver is sending his secret
password in the clear and disclosing it to the Spy. Specifically, the regularity
lemma stating that the Spy only knows the passwords of compromised agents
(AGHP Spy analz RPwd, omitted here) fails in the new model. This kind
of experiment may seem interesting, but it is unnecessary. The Inductive
Method works by establishing facts through formal proof of correctness. The
chain of reasoning is open to inspection. This is fundamentally different from
model checkers and other automatic analysis tools.

Our methods scale up to analysing accountability protocols. We have
examined two protocols that have similar goals but operate in very differ-
ent security environments. Numerous, though straightforward, changes were
necessary to model the novel architectures.

14. Conclusions

Establishing secure communication sessions with remote computers is vital
in our era of computer networks. Security stands for a variety of goals, which
may vary depending on the application domain. Confidentiality appears to
remain the best known and understood concept. But more recent properties,
such as various forms of agent accountability, are deepening their impact.
Enforcing those goals can be daunting, as it requires a deep understanding
of their significance and especially a clear connotation of the threats they are
supposed to withstand.

Practical experience has confuted many informal claims of security and
some formal ones. The e-commerce market is seriously concerned that most
purchase attempts terminate exactly at the stage of entering the credit card
details. Security is often ill understood by researchers, let alone by the gen-
eral population. Recently, a number of engineers without specific training in
security reduced security to mere cryptography straight away during a pri-
vate conversation. People in a cafeteria easily talked about connecting to the
Internet, but with difficulty about security issues. Here is their conversation
reported verbatim.

– A: “I surf the Internet just fine!”
– B: “I can’t! My computer says it’s got some ports closed!”
– A: “Then it must be a virus!”
– B: “Doesn’t a virus open up your ports instead?”

These experiences may sound trivial. However, they could be emblematic
of our times: we might just be witnessing the very beginning of the era of
secure computer networks. Our book is born in this atmosphere. It shows
us how to reason about the smallest subtleties of security protocols, thus
contributing to the general understanding of a core problem in the era of
secure computer networks. It also teaches us a specific formal method of
protocol analysis, and basic interaction with the theorem prover Isabelle. The
main conclusion is that the protocol verification problem can be effectively
tackled by formal methods with the aim of developing security protocols that
indeed are secure.

Security protocols are an important piece in the security puzzle. Under-
standing them thoroughly in turn means understanding a number of security

226 14. Conclusions

issues. While an informal language can favour human intuition, a formal
one can help unveil secluded features. The Inductive Method (Chapter 3) in
essence advances an approach to protocol analysis based on mathematical
proof of correctness. Each Isabelle proof can be easily inspected by humans,
who get the chance to decide whether the proof can be considered valid. This
might contribute to the evolution of secure computer networks better than
any boolean answers provided by mysterious press-button tools.

Various approaches have been taken to analysing security protocols for-
mally (Chapter 2). The earlier ones used known techniques of abstract logics
that had been established in other contexts, and tailored them to the new ap-
plication. Various techniques have been developed for the explicit purpose of
protocol analysis, such as strand spaces or special-purpose theorem provers.
For their own specialised nature, these seem to obtain some of the most sig-
nificant findings. However, established general-purpose techniques, such as
CSP used with model checking, have rarely failed to provide significant con-
tributions. It is difficult to choose the best approach, or perhaps impossible.
Notoriously, a group of methods used in conjunction may achieve the best
results in practice. However, with increasingly more complex protocols being
developed on top of existing ones, some support for composition of existing
results might be decisive in the future.

Composition of proofs is not currently supported in the Inductive Method.
Blanqui’s protocol-independent secrecy [33, 34] is significant though not ex-
actly in this vein. It rather counts as an attempt to generalise the formal
reasoning regardless of the specific protocol under analysis. Our brief account
of second-level protocols (Chapter 12) is a simplification of actual proof com-
position. The goals of the underlying protocols become available assumptions
to proving the goals of the protocols obtained by composition. It is not obvi-
ous that a proof obtained by composition would hold for the correspondingly
composed protocol: the proof should also account for hidden interactions be-
tween the protocols, which are not an issue in a stand-alone context [10, 66].

Formal analysis in general has at least one other merit: it keeps the fo-
cus on the assumed threats, which, history shows, are often neglected. Along
these lines, our goal availability principle (Chapter 5) stresses that explicit-
ness deserves no consideration without a detailed account of the underlying
threat model. Goal availability by itself stresses the importance of conducting
formal reasoning from the agents’ viewpoints. This will not simply result in
expressive formal statements but, more importantly, in new protocol insights.

If the goals of security protocols are not trivial to understand [81], then
they are less easy to study formally, and the resulting guarantees may be
difficult to interpret (Chapter 2). When our research began in late 1996, the
following goals had already been treated in the Inductive Method (Chapter 4):
regularity, unicity, confidentiality and authentication. We have substantially
deepened the treatment of the protocol goals as follows.

14. Conclusions 227

– A variety of subsidiary guarantees have been interpreted as reliability of
the formal protocol model.

– The regularity properties have been extended to the context of smartcard
protocols, which involve additional long-term keys.

– A number of existing guarantees have been reinterpreted in terms of au-
thenticity of messages, and their relation with integrity guarantees clarified.

– Novel unicity properties have been designed stating that an event can only
occur once (Chapter 6), or relying on fresh timestamps (Chapter 9).

– A stronger version of authentication called non-injective agreement has
been studied formally.

– The goal of key distribution has been treated formally.
– Accountability goals of evidence validity and fairness have received formal

treatment in the context of non-repudiation and certified e-mail (Chap-
ter 12).

Confidentiality was the only goal that would not require substantial exten-
sions if not for the generalisation, required by Kerberos IV, of a former proof
method. By contrast, the novel goals typically required the development of
additional proof methods. This can also be observed from our recent analy-
sis of the SET protocol with Massacci and Paulson [36, 37, 38], not part of
this book, which, for example, adopts our formalisation of message reception
(Chapter 8).

The formal treatment of timestamping turned out to be reasonably sim-
ple, although it required some formalisation of the concept of time. It was
used to analyse three versions of the Kerberos protocol: BAN (Chapter 6),
IV (Chapter 7) and V (Chapter 9). It also allowed for a temporal modelling
of accidents on session keys. In particular, Kerberos IV required moderate
extensions to existing proof methods for confidentiality, and Kerberos V un-
veiled alternative and faster proof methods for authentication, due precisely
to its main feature of disposing with the previous version’s use of double
encryption.

To complete a summary of this book’s contribution, the treatment of
agents’ knowledge must be recalled (Chapter 8). It developed around two
options, one in terms of mere message creation (trace inspection) and the
other in terms of message deducibility (message sending/receiving), and was
variously demonstrated throughout. It was fundamental to studying the goals
of non-injective agreement and key distribution. Another extension was an
account of smartcards, with associated long-term keys, computational power
and risks of loss or cloning (Chapter 10).

The Shoup-Rubin protocol was then studied in a realistic threat model
for its smartcards (Chapter 11) and some lack of explicitness was highlighted.
Finally the non-repudiation protocol by Zhou and Gollmann was compara-
tively analysed with the certified e-mail protocol by Abadi et al. (Chapter 13),
thanks to the dedicated extensions previously introduced in the Inductive
Method (Chapter 12).

228 14. Conclusions

The future of protocol verification is multifaceted. On the one hand, credit
card insurances currently seem the most common way to face electronic fraud.
On the other hand, fraud prevention seems ideal, so increasingly more re-
search in protocol correctness will become necessary to cope with emerging
goals. However, not all security properties become important goals. To give
just a few examples, the last years of the 1990s saw widespread rumours
about anonymity, which seems of interest only in very restricted contexts at
present. Conversely, non-denial of service has become a stringent need. A
technique to counter denial of service is cookie transformation [69]: move the
computational load onto the client, so that a server will engage in a session
only if the client previously did substantial computation. Very few attempts
to study this problem formally exist at present [114]. It seems fair to state
that the Inductive Method has reached a level of maturity to easily cope with
most emerging goals, even with protocols aiming at cookie transformation.
We can envisage some formalisation of this property in terms of a safety guar-
antee, as it remains clear that no liveness guarantee (namely that something
will happen) can be proved by induction.

Another line of research concerns the continuation of the analysis after
an attack is found [32]. It involves assuming that any agent can be the Spy,
acting for his own sake. This extended threat model is similar to the one we
used to analyse the accountability protocols, and seems perfectly plausible
in the present technical/social setting. It prepares the ground for unexplored
properties such as retaliation: if Alice attacks Bob, then Bob can attack Alice
back. Although easy to understand, such a goal is not trivial to formalise as
it may involve trace properties with at least double quantification. Proving
retaliation might have important social consequences. An attacker might opt
for refraining from attacking if the risk of being attacked back is considerable.
It is expected that retaliation goals can be analysed inductively although the
new threat model will increase the computational burden.

Before concluding with some statistics about the findings discussed in this
book, we remind the reader that all our proofs of correctness are available
from the 2006 distribution of Isabelle [33, 34] (before that distribution is
released, they can be found with the development snapshot [156]). It means
that they will be maintained and will remain fully functional while Isabelle
develops throughout the years, and hence will be available for researchers
and practitioners’ inspection also with future distributions of Isabelle.

Inspection can help appreciate in depth the entangled design strategies of
a number of protocols, some classical, others already deployed at the begin-
ning of this decade. As those design strategies are most likely to survive for
decades, we believe and, at the same time, hope that the results discussed in
this book will also serve to develop correct security protocols in the future.

14.1 Statistics 229

14.1 Statistics

There is concern that mathematical proofs are getting harder to verify by
humans: “A mathematical proof is irrefutably true, a manifestation of pure
logic. But an increasing number of mathematical proofs are now impossible
to verify with absolute certainty” [100] as they often span several thousand
lines. However, this does not apply to our proofs; some statistics confirm that
the scripts are of a manageable size. It is hard to express the human effort
necessary to develop the proofs, and statistics can only give a macroscopic
perspective.

14.1.1 Theory File Sizes

Some readers may find the sheer size of the theory files indicative of their
level of complication. Table 14.1 shows the total number of lines in each file.
That includes the specification of the protocol and necessary functions as
well as the theorem statements and their proof scripts. To give some idea of
the actual proof complications, the table also presents the number of proof
methods applied in each file.

Theory file Total lines Proof methods

Message.thy 969 216
Event.thy 357 51
Public.thy 451 77
NS Shared.thy 528 112
Kerberos BAN.thy 729 161
Kerberos BAN Gets.thy 720 145
KerberosIV.thy 1925 516
KerberosIV Gets.thy 1547 397
KerberosV.thy 1654 449
OtwayReesBella.thy 392 80
ZhouGollmann.thy 463 95
CertifiedEmail.thy 489 113
EventSC.thy 447 96
Smartcard.thy 474 70
ShoupRubin.thy 1395 206
ShoupRubinBella.thy 1389 212

Total 13929 2996

Table 14.1. Theory file sizes

As a rule of thumb, the larger the total number of lines, the larger the
protocol both in terms of specification and in terms of relevant properties.
Likewise, the larger the number of proof methods, the more complicated the
proofs. For example, a smartcard protocol counts approximately 1400 lines

230 14. Conclusions

in total, which is not too far from some Kerberos theory files, such as that
for version IV with message reception. However, a smartcard protocol only
features some 200 applications of proof methods, namely half as many as the
mentioned Kerberos version does. Such a simple comparison signifies that
Kerberos is shorter to specify but longer to prove correct.

If we consider the various Kerberos versions, we find that the BAN ver-
sion is smaller in both senses than the other versions, as can be expected.
Somewhat surprisingly, version IV formalised with message reception seems
smaller than the corresponding one without reception: KerberosIV Gets.thy

has only 1547 lines. But this is not meaningful as the smaller version pur-
posely omits a few minor theorems. The corresponding values for the BAN
version, which remain uniform after message reception, are more significant.

It is visible that Smartcard.thy resembles, and slightly extends, Public.thy
as it logically lies (Figure 3.1) at the same level: 474 total lines versus 451.
But the method applications negligibly decrease from 77 to 70. A similar
comparison reveals that the theory file of events for smartcards, EventSC.thy,
is appreciably more complicated than the original theory file: 474 total lines
versus 357, and 70 applications of proof methods versus 51.

Two other theory files are interesting to compare: NS Shared.thy and
OtwayReesBella.thy. The first contains the entire proof script for the pro-
tocol, while the second only features the fragment that is relevant to proving
the key distribution goal. But both values decrease proportionally from the
first to the second file. Finally, the two accountability protocols present co-
herent values. Theory CertifiedEmail.thy has only 19% more proof method
applications than theory ZhouGollmann.thy.

The entire proof script counts some 3000 applications of proof methods
and nearly 14000 total lines!

14.1.2 Proof Runtimes

Another important indicator of the complexity of proofs is how long they take
to execute. We measured the runtimes on two currently inexpensive configu-
rations, one running Linux and Poly/ML and the other running Cygwin on
Windows and SML/NJ. Here are their details.

Configuration A

– AMD Athlon XP 1500GHz
– 512 MB RAM
– Slackware 10.2, Linux kernel 2.6.14.3
– Poly/ML 4.1.4
– Isabelle development snapshot 13 February 2006
– Proof General 3.6pre050930

14.1 Statistics 231

Configuration B

– Intel Pentium M 760 (2GHz)
– 1 GB RAM
– Microsoft Windows XP Service Pack 2 and Cygwin 1.5.19-4
– SML/NJ 110.49
– Isabelle development snapshot 13 February 2006
– Proof General 3.6pre050930

Clearly, configuration B is more powerful than configuration A at least
in terms of hardware, so we expect a better performance despite the Linux
emulation offered by Cygwin. Our measurements given in Table 14.2 show
that configuration B nearly halves the performance of configuration A: 522
seconds versus 917.

Theory file Configuration A Configuration B

Message.thy 12 7
Event.thy 12 6
Public.thy 14 8
NS Shared.thy 40 23
Kerberos BAN.thy 36 20
Kerberos BAN Gets.thy 42 23
KerberosIV.thy 140 83
KerberosIV Gets.thy 150 85
KerberosV.thy 138 82
OtwayReesBella.thy 30 17
ZhouGollmann.thy 32 17
CertifiedEmail.thy 68 40
EventSC.thy 20 11
Smartcard.thy 11 6
ShoupRubin.thy 83 45
ShoupRubinBella.thy 89 49

Total 917 522

Table 14.2. Proof runtimes in seconds

It is easy to observe that the heaviest theory file is KerberosIV Gets.thy:
it executes in 150 seconds on configuration A and 85 seconds on configuration
B, which is approximately 44% faster. Similar theory files, also for Kerberos
IV, produce comparable runtimes.

The files for the smartcard protocols execute in less than 90 seconds and
less than 50 seconds in the two configurations respectively. These are about
58% of the mentioned Kerberos runtimes. Although the smartcard protocols
are longer to specify and perhaps understand, Kerberos IV and V are more
complex to reason about. This was also confirmed above by the much larger
number of applications of proof methods. It is the confidentiality argument

232 14. Conclusions

that is especially more complex and longer in Kerberos, due to its pair of
session keys. It follows that reasoning about the analz operator is particularly
time consuming.

The runtimes of the basic theory files of messages, events and smartcards
are not surprising. Neither are those for NS Shared.thy and Kerberos BAN.thy.
What was not expected was that the runtime of the certified e-mail protocol
more than doubles that of the non-repudiation protocol, although the former
has only 19% more proof methods, as mentioned above. This finding inspires
a closer comparison of the two proof scripts. It appears that, on average,
proving a subgoal of the certified e-mail protocol requires a deeper analysis
to specifically deal with the underlying goals of first-level security protocols.
It raises counterintuitive concerns that a hierarchical style of verification
might be more time consuming than a flat style, but further investigations
are necessary before turning those concerns into worries.

14.1.3 Human Effort

Measuring the human effort is especially difficult when the researchers do
not work full-time on a single project. We stated that our findings span
over nearly a decade. However, especially after the first four years (of the
author’s Ph.D. course), effort was only spent part-time. Nonetheless, some
approximations are provided in Table 14.3.

Theory file Man weeks (MW) Difficulty % (DP)

Message.thy / /
Event.thy 1 23
Public.thy / /
NS Shared.thy 1 10
Kerberos BAN.thy 12 75
Kerberos BAN Gets.thy 8 70
KerberosIV.thy 22 90
KerberosIV Gets.thy 1 20
KerberosV.thy 3 55
OtwayReesBella.thy 5 65
ZhouGollmann.thy 10 80
CertifiedEmail.thy 12 80
EventSC.thy 14 70
Smartcard.thy 8 60
ShoupRubin.thy 16 60
ShoupRubinBella.thy 2 25

Total 114 /

Table 14.3. Approximated human efforts

14.1 Statistics 233

The approximations are expressed in terms of man-weeks (MW) of the au-
thor’s time, and enriched with a difficulty percentage (DP), which is entirely
subjective. No values are available for the original theory files Message.thy

and Public.thy, already existing before our work. The moderate indicator
values for Event.thy reflect the updates to formalise message reception.

The two indicators are in general not trivially related. For example,
Kerberos BAN.thy was developed in approximately three months (MW=12)
and with significant difficulty (DP=75) due to the formalisation of times-
tamping. The corresponding version enriched with the reception event was
one third quicker to develop, although its difficulty percentage remains as
high as 70. This reflects the first experiments with the reception event, which
was quicker and easier to incorporate in subsequent analyses.

The statistics about Kerberos IV are significant. It can be seen that
KerberosIV.thy was the longest (MW=22) and hardest theory file (DP=90)
to develop. This is due to the difficult confidentiality goals and to the first ac-
count of agents’ knowledge on the basis of trace inspection. Interestingly, the
corresponding version enriched with the reception event was extremely quick
(MW=1) thanks to previous experience with the BAN version, but not pro-
portionally trivial (DP=20) due to the delicate updates to some subsidiary
lemmas. Kerberos V was finished rather quickly (MW=3), but the necessity
of novel proof methods increased its difficulty percentage (DP=55).

The indicator values for NS Shared.thy only refer to the proofs of the Issues
properties, and hence are rather low, as the main properties of this protocol
had already been studied by Paulson. Also those about OtwayReesBella.thy

only refer to the innovative proof of the key distribution goal, but the in-
dicator values (MW=5, DP=65) are emblematic of the originality of the
underlying ideas.

It can be seen that the indicator values for the two accountability pro-
tocols are almost identical. The slightly longer time for CertifiedEmail.thy

betrays the various attempts to formalise second-level protocols. We then
come to the formalisation of smartcards. The theory file EventSC.thy required
more than three months (MW=14), and was significantly difficult (DP=70)
not only for the introduction of the extra events for smartcards but also, and
especially, for the delicate formalisation of agents’ knowledge depending on
the assumption of secure means. Then, Smartcard.thy took less time (MW=8)
but was comparatively harder (DP=60) due to some initial confusion with
the usability of the cards over secure or insecure means.

Finally, the actual smartcard protocol was rather long to deal with
(MW=16) because it is the longest protocol ever analysed inductively. Its
formal model is longer than that of the purchase phase of SET [38]. However,
it was proportionally easy to deal with (DP=60) as the main proofs are long
rather than complicated (one may have many facts to prove, but easily). Our
updated version ShoupRubinBella.thy, which did not seem to be easy work

234 14. Conclusions

(DP=25), especially for the interpretative efforts, was developed in just a
couple of weeks (MW=2).

Concluding with the human effort, the preparation of this manuscript took
about 34 man-weeks to be added to the approximately 40 for the preparation
of the author’s Ph.D. thesis on which this book is based. These values do not
include the development of general concepts, such as goal availability, which
did not involve interaction with the theorem prover: some 20 man-weeks.
Therefore, the grand total is 208 man-weeks.

A. Proof Script Fragments for Kerberos IV

A.1 Reliability

The following describes the form of all components sent by Kas.

lemma Says_Kas_message_form:
"[[Says Kas A

(Crypt K {|Key authK, Agent Peer, Number Ta, authTicket|})
∈ set evs;

evs ∈ kerbIV]] =⇒
K = shrK A & Peer = Tgs &
authK /∈ range shrK & authK ∈ authKeys evs & authK ∈ symKeys &
authTicket =

(Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta|}) &
Key authK /∈ used(before
Says Kas A (Crypt K {|Key authK, Agent Peer, Number Ta, authTicket|})

on evs) &
Ta = CT (before
Says Kas A (Crypt K {|Key authK, Agent Peer, Number Ta, authTicket|})

on evs)"
apply (unfold before_def)
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (simp_all (no_asm) add: authKeys_def authKeys_insert,

blast, blast)

K2

apply (simp (no_asm) add: takeWhile_tail)
apply (rule conjI)
apply clarify
apply (rule conjI)
apply clarify
apply (rule conjI)
apply blast
apply (rule conjI)
apply clarify
apply (rule conjI)

Subcase: used before.

apply (blast dest: used_evs_rev [THEN equalityD2,
THEN contra_subsetD] used_takeWhile_used)

236 A. Proof Script Fragments for Kerberos IV

Subcase: CT before.
apply (fastsimp dest!: set_evs_rev [THEN equalityD2,

THEN contra_subsetD, THEN takeWhile_void])
apply blast

Rest
apply blast+
done

lemma K3_imp_K2:
"[[Says A Tgs

{|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B|}
∈ set evs;

A /∈ bad; evs ∈ kerbIV]]
=⇒ ∃ Ta. Says Kas A (Crypt (shrK A)

{|Key authK, Agent Tgs, Number Ta, authTicket|})
∈ set evs"

apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all, blast, blast)
apply (blast dest: Says_imp_spies [THEN parts.Inj,

THEN authK_authentic])
done

Describes the form of all compontents sent by Tgs.
lemma Says_Tgs_message_form:

"[[Says Tgs A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})
∈ set evs;

evs ∈ kerbIV]]
=⇒ B 6= Tgs &

authK /∈ range shrK & authK ∈ authKeys evs & authK ∈ symKeys &
servK /∈ range shrK & servK /∈ authKeys evs & servK ∈ symKeys &
servTicket =
(Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|}) &

Key servK /∈ used (before
Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})

on evs) &
Ts = CT(before

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})
on evs) "

apply (unfold before_def)
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (simp_all add: authKeys_insert authKeys_not_insert

authKeys_empty authKeys_simp, blast)

We need this simplification only for Message 4.
apply (simp (no_asm) add: takeWhile_tail)
apply auto

Five subcases of Message 4.

A.2 Session-key Compromise 237

apply (blast dest!: SesKey_is_session_key)
apply (blast dest: authTicket_crypt_authK)
apply (blast dest!: authKeys_used Says_Kas_message_form)

Subcase: used before.
apply (blast dest: used_evs_rev [THEN equalityD2, THEN

contra_subsetD] used_takeWhile_used)

Subcase: CT before.
apply (fastsimp dest!: set_evs_rev [THEN equalityD2,

THEN contra_subsetD, THEN takeWhile_void])
done

lemma authTicket_form:
"[[Crypt (shrK A) {|Key authK, Agent Tgs, Ta, authTicket|}

∈ parts (spies evs);
A /∈ bad;
evs ∈ kerbIV]]

=⇒ authK /∈ range shrK & authK ∈ symKeys &
authTicket = Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Ta|}"

apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (frule_tac [7] K5_msg_in_parts_spies)
apply (frule_tac [5] K3_msg_in_parts_spies, simp_all)
apply (blast+)
done

A.2 Session-key Compromise

Big simplification law for session keys that are not encrypted by keys in a
given set KK. It helps us prove three, otherwise harder, facts about keys.
These facts are exploited as simplification laws for analz, and also “limit the
damage” in the case of loss of a key to the Spy.
lemma Key_analz_image_Key [rule_format (no_asm)]:

"evs ∈ kerbIV =⇒
(∀ SK KK. SK ∈ symKeys & KK <= -(range shrK) −→
(∀ K ∈ KK. ¬ AKcryptSK K SK evs) −→
(Key SK ∈ analz (Key‘KK Un (spies evs))) =
(SK ∈ KK | Key SK ∈ analz (spies evs)))"

apply (erule kerbIV.induct)
apply (frule_tac [10] Oops_range_spies2)
apply (frule_tac [9] Oops_range_spies1)
apply (frule_tac [7] Says_tgs_message_form)
apply (frule_tac [5] Says_kas_message_form)
apply (safe del: impI intro!: Key_analz_image_Key_lemma [THEN impI])

Case-splits for Oops1 and message 5: the negated case simplifies using the
induction hypothesis.
apply (case_tac [11] "AKcryptSK authK SK evsO1")

238 A. Proof Script Fragments for Kerberos IV

apply (case_tac [8] "AKcryptSK servK SK evs5")
apply (simp_all del: image_insert

add: analz_image_freshK_simps AKcryptSK_Says shrK_not_AKcryptSK
Oops2_not_AKcryptSK Auth_fresh_not_AKcryptSK

Serv_fresh_not_AKcryptSK Says_Tgs_AKcryptSK Spy_analz_shrK)
— Computationally expensive

Fake

apply spy_analz

K2

apply blast

K3

apply blast

K4

apply (blast dest!: authK_not_AKcryptSK)

K5

apply (case_tac "Key servK ∈ analz (spies evs5) ")

If servK is compromised then the result follows directly...

apply (simp (no_asm_simp) add: analz_insert_eq Un_upper2
[THEN analz_mono, THEN subsetD])

...therefore servK is uncompromised.

The AKcryptSK servK SK evs5 case leads to a contradiction.

apply (blast elim!: servK_not_AKcryptSK [THEN [2] rev_notE]
del: allE ballE)

Another K5 case.

apply blast

Oops1

apply simp
apply (blast dest!: AKcryptSK_analz_insert)
done

First simplification law for analz: no session keys encrypt authkeys or
shared keys.

lemma analz_insert_freshK1:
"[[evs ∈ kerbIV; K ∈ authKeys evs Un range shrK;

SesKey /∈ range shrK]]
=⇒ (Key K ∈ analz (insert (Key SesKey) (spies evs))) =

(K = SesKey | Key K ∈ analz (spies evs))"
apply (frule authKeys_are_not_AKcryptSK, assumption)
apply (simp del: image_insert

add: analz_image_freshK_simps add: Key_analz_image_Key)

A.3 Session-key Confidentiality 239

done

Second simplification law for analz: no servkeys encrypt any other keys.

lemma analz_insert_freshK2:
"[[evs ∈ kerbIV; servK /∈ (authKeys evs); servK /∈ range shrK;

K ∈ symKeys]]
=⇒ (Key K ∈ analz (insert (Key servK) (spies evs))) =

(K = servK | Key K ∈ analz (spies evs))"
apply (frule not_authKeys_not_AKcryptSK, assumption, assumption)
apply (simp del: image_insert

add: analz_image_freshK_simps add: Key_analz_image_Key)
done

Third simplification law for analz: only one authkey encrypts a certain
servkey.

lemma analz_insert_freshK3:
"[[AKcryptSK authK servK evs;

authK’ 6= authK; authK’ /∈ range shrK; evs ∈ kerbIV]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
apply (drule_tac authK’ = authK’ in not_different_AKcryptSK, blast,

assumption)
apply (simp del: image_insert

add: analz_image_freshK_simps add: Key_analz_image_Key)
done

Alternative formulation.

lemma analz_insert_freshK3_bis:
"[[Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})
∈ set evs;

authK 6= authK’; authK’ /∈ range shrK; evs ∈ kerbIV]]
=⇒ (Key servK ∈ analz (insert (Key authK’) (spies evs))) =

(servK = authK’ | Key servK ∈ analz (spies evs))"
apply (frule AKcryptSKI, assumption)
apply (simp add: analz_insert_freshK3)
done

A.3 Session-key Confidentiality

If Spy sees the authkey sent in msg K2, then the key has expired.

lemma Confidentiality_Kas_lemma [rule_format]:
"[[authK ∈ symKeys; A /∈ bad; evs ∈ kerbIV]]
=⇒ Says Kas A

(Crypt (shrK A)
{|Key authK, Agent Tgs, Number Ta,

Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key authK, Number Ta|}|})
∈ set evs −→

240 A. Proof Script Fragments for Kerberos IV

Key authK ∈ analz (spies evs) −→
expiredAK Ta evs"

apply (erule kerbIV.induct)
apply (frule_tac [10] Oops_range_spies2)
apply (frule_tac [9] Oops_range_spies1)
apply (frule_tac [7] Says_tgs_message_form)
apply (frule_tac [5] Says_kas_message_form)
apply (safe del: impI conjI impCE)
apply (simp_all (no_asm_simp) add: Says_Kas_message_form

less_SucI analz_insert_eq
not_parts_not_analz analz_insert_freshK1 pushes)

Fake

apply spy_analz

K2

apply blast

K4

apply blast

K5

apply (blast dest: servK_notin_authKeysD
Says_Kas_message_form intro: less_SucI)

Oops1

apply (blast dest!: unique_authKeys intro: less_SucI)

Oops2

apply (blast dest: Says_Tgs_message_form Says_Kas_message_form)
done

lemma Confidentiality_Kas:
"[[Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Number Ta, authTicket|})
∈ set evs;

¬ expiredAK Ta evs;
A /∈ bad; evs ∈ kerbIV]]

=⇒ Key authK /∈ analz (spies evs)"
by (blast dest: Says_Kas_message_form Confidentiality_Kas_lemma)

If Spy sees the servkey sent in msg K4, then the key has expired.

lemma Confidentiality_lemma [rule_format]:
"[[Says Tgs A

(Crypt authK
{|Key servK, Agent B, Number Ts,

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|}|})
∈ set evs;

Key authK /∈ analz (spies evs);
servK ∈ symKeys;
A /∈ bad; B /∈ bad; evs ∈ kerbIV]]

A.3 Session-key Confidentiality 241

=⇒ Key servK ∈ analz (spies evs) −→
expiredSK Ts evs"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbIV.induct)
apply (rule_tac [9] impI)+

— The Oops1 case is unusual: must simplify Authkey /∈ analz (knows Spy
(ev # evs)), not letting analz_mono_contra weaken it to Authkey /∈ analz
(knows Spy evs), for we then conclude authK 6= authKa.
apply analz_mono_contra
apply (frule_tac [10] Oops_range_spies2)
apply (frule_tac [9] Oops_range_spies1)
apply (frule_tac [7] Says_tgs_message_form)
apply (frule_tac [5] Says_kas_message_form)
apply (safe del: impI conjI impCE)
apply (simp_all add: less_SucI new_keys_not_analzd

Says_Kas_message_form Says_Tgs_message_form analz_insert_eq
not_parts_not_analz analz_insert_freshK1
analz_insert_freshK2 analz_insert_freshK3_bis pushes)

Fake

apply spy_analz

K2

apply (blast intro: parts_insertI less_SucI)

K4

apply (blast dest: authTicket_authentic Confidentiality_Kas)

Oops2

prefer 3
apply (blast dest: Says_imp_spies [THEN parts.Inj]

Key_unique_SesKey intro: less_SucI)

Oops1

prefer 2
apply (blast dest: Says_Kas_message_form Says_Tgs_message_form intro:

less_SucI)

K5. Not obvious how this step could be integrated with the main simpli-
fication step. Done in KerberosV.thy

apply clarify
apply (erule_tac V = "Says Aa Tgs ?X ∈ set ?evs" in thin_rl)
apply (frule Says_imp_spies [THEN parts.Inj,

THEN servK_notin_authKeysD])
apply (assumption, blast, assumption)
apply (simp add: analz_insert_freshK2)
apply (blast dest: Says_imp_spies [THEN parts.Inj] Key_unique_SesKey

intro: less_SucI)
done

In the real world Tgs can’t check whether an authkey is secure!

242 A. Proof Script Fragments for Kerberos IV

lemma Confidentiality_Tgs:
"[[Says Tgs A

(Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})
∈ set evs;

Key authK /∈ analz (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV]]

=⇒ Key servK /∈ analz (spies evs)"
apply (blast dest: Says_Tgs_message_form Confidentiality_lemma)
done

In the real world Tgs CAN check what Kas sends!

lemma Confidentiality_Tgs_bis:
"[[Says Kas A

(Crypt Ka {|Key authK, Agent Tgs, Number Ta, authTicket|})
∈ set evs;

Says Tgs A
(Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})

∈ set evs;
¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV]]

=⇒ Key servK /∈ analz (spies evs)"
apply (blast dest!: Confidentiality_Kas Confidentiality_Tgs)
done

Most general form.

lemmas Confidentiality_Tgs_ter = authTicket_authentic
[THEN Confidentiality_Tgs_bis]

lemmas Confidentiality_Auth_A = authK_authentic
[THEN Confidentiality_Kas]

lemma Confidentiality_Serv_A:
"[[Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket|}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket|}
∈ parts (spies evs);

¬ expiredAK Ta evs; ¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; evs ∈ kerbIV]]

=⇒ Key servK /∈ analz (spies evs)"
apply (drule authK_authentic, assumption, assumption)
apply (blast dest: Confidentiality_Kas Says_Kas_message_form

servK_authentic_ter Confidentiality_Tgs_bis)
done

lemma Confidentiality_B:
"[[Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|}

∈ parts (spies evs);
Crypt authK {|Key servK, Agent B, Number Ts, servTicket|}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta, authTicket|}
∈ parts (spies evs);

¬ expiredSK Ts evs; ¬ expiredAK Ta evs;

A.3 Session-key Confidentiality 243

A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV]]
=⇒ Key servK /∈ analz (spies evs)"

apply (frule authK_authentic)
apply (frule_tac [3] Confidentiality_Kas)
apply (frule_tac [6] servTicket_authentic, auto)
apply (blast dest!: Confidentiality_Tgs_bis

dest: Says_Kas_message_form servK_authentic
unique_servKeys unique_authKeys)

done

The updated protocol makes servkey confidentiality available to B, in the
sense of goal availability.

lemma u_Confidentiality_B:
"[[Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|}

∈ parts (spies evs);
¬ expiredSK Ts evs;
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbIV]]

=⇒ Key servK /∈ analz (spies evs)"
apply (blast dest: u_servTicket_authentic u_NotexpiredSK_NotexpiredAK

Confidentiality_Tgs_bis)
done

B. Proof Script Fragments for Kerberos V

B.1 Unicity

An authkey is encrypted by one and only one shared key. A servkey is
encrypted by one and only one authK.

lemma Key_unique_SesKey:
"[[Crypt K {|Key SesKey, Agent B, T|}

∈ parts (spies evs);
Crypt K’ {|Key SesKey, Agent B’, T’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbV]]
=⇒ K=K’ & B=B’ & T=T’"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)

Fake, K2, K4

apply (blast+)
done

lemma unique_CryptKey:
"[[Crypt (shrK B) {|Agent A, Agent B, Key SesKey, T|}

∈ parts (spies evs);
Crypt (shrK B’) {|Agent A’, Agent B’, Key SesKey, T’|}
∈ parts (spies evs); Key SesKey /∈ analz (spies evs);

evs ∈ kerbIV]]
=⇒ A=A’ & B=B’ & T=T’"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)

Fake, K2, K4

apply (blast+)
done

246 B. Proof Script Fragments for Kerberos V

The session key, if secure, uniquely identifies the ticket whether authTicket
or servTicket. As a matter of fact, one can read also Tgs in the place of B.

lemma unique_authKeys:
"[[Says Kas A

{|Crypt Ka {|Key authK, Agent Tgs, Ta|}, X|} ∈ set evs;
Says Kas A’

{|Crypt Ka’ {|Key authK, Agent Tgs, Ta’|}, X’|} ∈ set evs;
evs ∈ kerbV]] =⇒ A=A’ ∧ Ka=Ka’ ∧ Ta=Ta’ ∧ X=X’"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)
apply blast+
done

The servkey uniquely identifies the message from Tgs.

lemma unique_servKeys:
"[[Says Tgs A

{|Crypt K {|Key servK, Agent B, Ts|}, X|} ∈ set evs;
Says Tgs A’

{|Crypt K’ {|Key servK, Agent B’, Ts’|}, X’|} ∈ set evs;
evs ∈ kerbV]] =⇒ A=A’ ∧ B=B’ ∧ K=K’ ∧ Ts=Ts’ ∧ X=X’"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts, simp_all)
apply blast+
done

B.2 Unicity Relying on Timestamps

Novel guarantees, never studied before. Because honest agents always say
the right timestamp in authenticators, we can prove unicity guarantees based
exactly on timestamps. Classical unicity guarantees are based on nonces. Of
course, assuming the agent to be different from the Spy, rather than not in the
set bad, would suffice below. Similar guarantees must also hold for Kerberos
IV.

Cannot prove a general fact for any message that is sent, but can prove a
less general fact concerning only authenticators!

lemma honest_never_says_newer_timestamp_in_auth:
"[[(CT evs) ≤ T; Number T ∈ parts {X}; A /∈ bad; evs ∈ kerbV]]
=⇒ Says A B {|Y, X|} /∈ set evs"

apply (erule rev_mp)
apply (erule kerbV.induct)

B.2 Unicity Relying on Timestamps 247

apply (simp_all)
apply force+
done

lemma honest_never_says_current_timestamp_in_auth:
"[[(CT evs) = T; Number T ∈ parts {X}; A /∈ bad; evs ∈ kerbV]]
=⇒ Says A B {|Y, X|} /∈ set evs"

apply (frule eq_imp_le)
apply (blast dest: honest_never_says_newer_timestamp_in_auth)
done

Observe that an honest agent can send the same timestamp on two
different traces of the same length, but not on the same trace! A num-
ber of theorems with the same formulation and proof follow, all relying on
honest_never_says_current_timestamp_in_auth.

lemma unique_timestamp_authenticator1:
"[[Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs;

Says A Kas’ {|Agent A, Agent Tgs’, Number T1|} ∈ set evs;
A /∈bad; evs ∈ kerbV]]

=⇒ Kas=Kas’ ∧ Tgs=Tgs’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all, blast)
apply auto
apply (simp_all add: honest_never_says_current_timestamp_in_auth)
done

lemma unique_timestamp_authenticator2:
"[[Says A Tgs {|AT, Crypt AK {|Agent A, Number T2|}, Agent B|}

∈ set evs;
Says A Tgs’ {|AT’, Crypt AK’ {|Agent A, Number T2|}, Agent B’|}
∈ set evs;
A /∈ bad; evs ∈ kerbV]]

=⇒ Tgs=Tgs’ ∧ AT=AT’ ∧ AK=AK’ ∧ B=B’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all, blast)
apply auto
apply (simp_all add: honest_never_says_current_timestamp_in_auth)
done

lemma unique_timestamp_authenticator3:
"[[Says A B {|ST, Crypt SK {|Agent A, Number T|}|} ∈ set evs;

Says A B’ {|ST’, Crypt SK’ {|Agent A, Number T|}|} ∈ set evs;
A /∈ bad; evs ∈ kerbV]]

=⇒ B=B’ ∧ ST=ST’ ∧ SK=SK’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all, blast)
apply auto
— The lemma applies as if the second part of the message were an authenticator.
apply (simp_all add: honest_never_says_current_timestamp_in_auth)

248 B. Proof Script Fragments for Kerberos V

done

lemma unique_timestamp_authticket:
"[[Says Kas A {|X, Crypt (shrK Tgs) {|Agent A, Agent Tgs, Key AK, T|}|}

∈ set evs;
Says Kas A’
{|X’, Crypt (shrK Tgs’) {|Agent A’, Agent Tgs’, Key AK’, T|}|}
∈ set evs;

evs ∈ kerbV]]
=⇒ A=A’ ∧ X=X’ ∧ Tgs=Tgs’ ∧ AK=AK’"

apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all)
apply auto
— The lemma applies as if the second part of the message were an authenticator.
apply (simp_all add: honest_never_says_current_timestamp_in_auth)
done

lemma unique_timestamp_servticket:
"[[Says Tgs A {|X, Crypt (shrK B) {|Agent A, Agent B, Key SK, T|}|}

∈ set evs;
Says Tgs A’ {|X’, Crypt (shrK B’) {|Agent A’, Agent B’, Key SK’, T|}|}

∈ set evs;
evs ∈ kerbV]]

=⇒ A=A’ ∧ X=X’ ∧ B=B’ ∧ SK=SK’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all)
apply auto
apply (simp_all add: honest_never_says_current_timestamp_in_auth)
done

For the Kas case, we need to inspect the first half of the message, hence
we need another lemma, but this only holds for Kas and Tgs.

lemma Kas_never_says_newer_timestamp:
"[[(CT evs) ≤ T; Number T ∈ parts {X}; evs ∈ kerbV]]
=⇒ ∀ A. Says Kas A X /∈ set evs"

apply (erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all)
apply force+
done

lemma Kas_never_says_current_timestamp:
"[[(CT evs) = T; Number T ∈ parts {X}; evs ∈ kerbV]]
=⇒ ∀ A. Says Kas A X /∈ set evs"

apply (frule eq_imp_le)
apply (blast dest: Kas_never_says_newer_timestamp)
done

lemma unique_timestamp_msg2:

B.3 Key Distribution and Non-injective Agreement 249

"[[Says Kas A {|Crypt (shrK A) {|Key AK, Agent Tgs, T|}, AT|}
∈ set evs;

Says Kas A’ {|Crypt (shrK A’) {|Key AK’, Agent Tgs’, T|}, AT’|}
∈ set evs;

evs ∈ kerbV]]
=⇒ A=A’ ∧ AK=AK’ ∧ Tgs=Tgs’ ∧ AT=AT’"

apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all)
apply auto
apply (simp_all add: Kas_never_says_current_timestamp)
done

Same argument for the Tgs case.

lemma Tgs_never_says_newer_timestamp:
"[[(CT evs) ≤ T; Number T ∈ parts {X}; evs ∈ kerbV]]
=⇒ ∀ A. Says Tgs A X /∈ set evs"

apply (erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all)
apply force+
done

lemma Tgs_never_says_current_timestamp:
"[[(CT evs) = T; Number T ∈ parts {X}; evs ∈ kerbV]]
=⇒ ∀ A. Says Tgs A X /∈ set evs"

apply (frule eq_imp_le)
apply (blast dest: Tgs_never_says_newer_timestamp)
done

lemma unique_timestamp_msg4:
"[[Says Tgs A {|Crypt (shrK A) {|Key SK, Agent B, T|}, ST|}

∈ set evs;
Says Tgs A’ {|Crypt (shrK A’) {|Key SK’, Agent B’, T|}, ST’|}

∈ set evs;
evs ∈ kerbV]]

=⇒ A=A’ ∧ SK=SK’ ∧ B=B’ ∧ ST=ST’"
apply (erule rev_mp, erule rev_mp)
apply (erule kerbV.induct)
apply (simp_all)
apply auto
apply (simp_all add: Tgs_never_says_current_timestamp)
done

B.3 Key Distribution and Non-injective Agreement

Agents’ knowledge of session keys. An agent knows a session key if he used it
to issue a cipher. These guarantees can be interpreted both in terms of key
distribution and of non-injective agreement on the session key.

250 B. Proof Script Fragments for Kerberos V

lemma B_Issues_A:
"[[Says B A (Crypt servK (Number T3)) ∈ set evs;

Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
apply (simp (no_asm) add: Issues_def)
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
apply blast

K6 requires numerous lemmas.

apply (simp add: takeWhile_tail)
apply (blast dest: servTicket_authentic parts_spies_takeWhile_mono

[THEN subsetD] parts_spies_evs_revD2 [THEN subsetD]
intro: Says_K6)

done

lemma A_authenticates_and_keydist_to_B:
"[[Crypt servK (Number T3) ∈ parts (spies evs);

Crypt authK {|Key servK, Agent B, Number Ts|}
∈ parts (spies evs);

Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta|}
∈ parts (spies evs);

Key authK /∈ analz (spies evs); Key servK /∈ analz (spies evs);
A /∈ bad; B /∈ bad; B 6= Tgs; evs ∈ kerbV]]

=⇒ B Issues A with (Crypt servK (Number T3)) on evs"
apply (blast dest!: A_authenticates_B B_Issues_A)
done

lemma A_Issues_B:
"[[Says A B {|ST, Crypt servK {|Agent A, Number T3|}|} ∈ set evs;

Key servK /∈ analz (spies evs);
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbV]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
apply (simp (no_asm) add: Issues_def)
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerbV.induct, analz_mono_contra)
apply (frule_tac [7] Says_ticket_parts)
apply (frule_tac [5] Says_ticket_parts)
apply (simp_all (no_asm_simp))

K5

apply auto
apply (simp add: takeWhile_tail)

B.3 Key Distribution and Non-injective Agreement 251

Case study necessary because the assumption doesn’t state the form of
servTicket. The guarantee becomes stronger.

prefer 2 apply (simp add: takeWhile_tail)
apply (frule K3_imp_K2, assumption, assumption, erule exE, erule exE)
apply (case_tac "Key authK ∈ analz (spies evs5)")
apply (drule Says_imp_knows_Spy [THEN analz.Inj, THEN analz.Fst,
THEN analz_Decrypt’, THEN analz.Fst], assumption, assumption, simp)
apply (frule K3_imp_K2, assumption, assumption, erule exE, erule exE)
apply (drule Says_imp_knows_Spy [THEN parts.Inj, THEN parts.Fst])
apply (frule servK_authentic_ter, blast, assumption+)
apply (drule parts_spies_takeWhile_mono [THEN subsetD])
apply (drule parts_spies_evs_revD2 [THEN subsetD])

Says_K5 closes the proof in version IV because it is clear which servTicket
an authenticator appears with in msg 5. In version V an authenticator can
appear with any item that the Spy could replace the servTicket with.

apply (frule Says_K5, blast, assumption, assumption, assumption,
assumption, erule exE)

We need to state that an honest agent wouldn’t send the wrong timestamp
within an authenticator, wathever it is paired with.

apply (simp add: honest_never_says_current_timestamp_in_auth)
done

lemma B_authenticates_and_keydist_to_A:
"[[Crypt servK {|Agent A, Number T3|} ∈ parts (spies evs);

Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|}
∈ parts (spies evs);

Key servK /∈ analz (spies evs);
B 6= Tgs; A /∈ bad; B /∈ bad; evs ∈ kerbV]]

=⇒ A Issues B with (Crypt servK {|Agent A, Number T3|}) on evs"
apply (blast dest: B_authenticates_A A_Issues_B)
done

C. Proof Script Fragments for Shoup-Rubin

C.1 Function “initState”

consts
initState :: "agent => msg set"

primrec

initState_Server: "initState Server =
(Key‘(range shrK ∪ range crdK ∪ range PIN ∪ range pairK)) ∪
(Nonce‘(range Pairkey))"

initState_Friend: "initState (Friend i) = {Key (PIN (Friend i))}"

initState_Spy: "initState Spy =
(Key‘((PIN‘bad) ∪ (PIN ‘{A. Card A ∈ cloned}) ∪

(shrK‘{A. Card A ∈ cloned}) ∪
(crdK‘cloned) ∪
(pairK‘{(X,A). Card A ∈ cloned})))

∪ (Nonce‘(Pairkey‘{(A,B). Card A ∈ cloned & Card B ∈ cloned}))"

lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState Server"
apply (induct_tac "A")
apply auto
done

lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
apply (rule initState_into_used)
apply blast
done

lemma crdK_in_initState [iff]: "Key (crdK A) ∈ initState Server"
apply (induct_tac "A")
apply auto
done

lemma crdK_in_used [iff]: "Key (crdK A) ∈ used evs"
apply (rule initState_into_used)
apply blast
done

254 C. Proof Script Fragments for Shoup-Rubin

lemma PIN_in_initState [iff]: "Key (PIN A) ∈ initState A"
apply (induct_tac "A")
apply auto
done

lemma PIN_in_used [iff]: "Key (PIN A) ∈ used evs"
apply (rule initState_into_used)
apply blast
done

lemma pairK_in_initState [iff]: "Key (pairK X) ∈ initState Server"
apply (induct_tac "X")
apply auto
done

lemma pairK_in_used [iff]: "Key (pairK X) ∈ used evs"
apply (rule initState_into_used)
apply blast
done

C.2 Function “knows”

consts
knows :: "agent => event list => msg set"

primrec
knows_Nil: "knows A [] = initState A"
knows_Cons: "knows A (ev # evs) =

(case ev of
Says A’ B X =>

if (A=A’ | A=Spy) then insert X (knows A evs)
else knows A evs

| Notes A’ X =>
if (A=A’ | (A=Spy & A’∈bad)) then insert X (knows A evs)

else knows A evs
| Gets A’ X =>

if (A=A’ & A 6= Spy) then insert X (knows A evs)
else knows A evs

| Inputs A’ C X =>
if secureM then

if A=A’ then insert X (knows A evs) else knows A evs
else

if (A=A’ | A=Spy) then insert X (knows A evs)
else knows A evs

| C_Gets C X => knows A evs
| Outpts C A’ X =>

if secureM then
if A=A’ then insert X (knows A evs) else knows A evs

else
if A=Spy then insert X (knows A evs) else knows A evs

| A_Gets A’ X =>

C.3 Authentication 255

if (A=A’ & A 6= Spy) then insert X (knows A evs)
else knows A evs)"

lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"

by simp

Letting the Spy see compromised agents’ notes avoids redundant case-
splits on whether A is the Spy and whether she is compromised.

lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =

(if A∈ bad then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Gets [simp]:
"knows Spy (Gets A X # evs) = knows Spy evs"

by simp

lemma knows_Spy_Inputs_secureM [simp]:
"secureM =⇒ knows Spy (Inputs A C X # evs) =

(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Inputs_insecureM [simp]:
"insecureM =⇒

knows Spy (Inputs A C X # evs) = insert X (knows Spy evs)"
by simp

lemma knows_Spy_C_Gets [simp]:
"knows Spy (C_Gets C X # evs) = knows Spy evs"

by simp

lemma knows_Spy_Outpts_secureM [simp]:
"secureM =⇒ knows Spy (Outpts C A X # evs) =

(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Outpts_insecureM [simp]:
"insecureM =⇒

knows Spy (Outpts C A X # evs) = insert X (knows Spy evs)"
by simp

lemma knows_Spy_A_Gets [simp]:
"knows Spy (A_Gets A X # evs) = knows Spy evs"

by simp

C.3 Authentication

lemma Outpts_A_Card_form_10:
"[[Outpts (Card A) A {|Key K, Certificate|} ∈ set evs; evs ∈ sr]]

256 C. Proof Script Fragments for Shoup-Rubin

=⇒ ∃ B Nb.
K = sesK(Nb,pairK(A,B)) ∧
Certificate = (Crypt (pairK(A,B)) (Nonce Nb))"

apply (erule rev_mp, erule sr.induct)
apply (simp_all (no_asm_simp))
done

lemma Na_Nb_certificate_authentic:
"[[Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|} ∈ parts (knows Spy evs);

¬illegalUse(Card B);
evs ∈ sr]]

=⇒ Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply simp_all
apply spy_analz
apply clarify
done

lemma Nb_certificate_authentic:
"[[Crypt (pairK(A,B)) (Nonce Nb) ∈ parts (knows Spy evs);

B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr]]

=⇒ Outpts (Card A) A {|Key (sesK(Nb,pairK(A,B))),
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

apply (erule rev_mp, erule sr.induct)
apply parts_prepare
apply (case_tac [17] "Aa = Spy")
apply simp_all
apply spy_analz
apply clarify+
done

lemma A_authenticates_B:
"[[Outpts (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evs;
¬illegalUse(Card B);
evs ∈ sr]]
=⇒ ∃ Na.

Outpts (Card B) B {|Nonce Nb, Key K,
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

apply (blast dest: Na_Nb_certificate_authentic Outpts_A_Card_form_10
Outpts_A_Card_imp_pairK_parts)
done

lemma A_authenticates_B_Gets:
"[[Gets A {|Nonce Nb, Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|}|}

∈ set evs;
¬illegalUse(Card B);
evs ∈ sr]]

C.3 Authentication 257

=⇒ Outpts (Card B) B {|Nonce Nb, Key (sesK(Nb, pairK (A, B))),
Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},
Crypt (pairK(A,B)) (Nonce Nb)|} ∈ set evs"

apply (blast dest: Gets_imp_knows_Spy [THEN parts.Inj, THEN parts.Snd,
THEN Na_Nb_certificate_authentic])

done

lemma B_authenticates_A:
"[[Gets B (Crypt (pairK(A,B)) (Nonce Nb)) ∈ set evs;

B 6= Spy; ¬illegalUse(Card A); ¬illegalUse(Card B);
evs ∈ sr]]

=⇒ Outpts (Card A) A
{|Key (sesK(Nb,pairK(A,B))), Crypt (pairK(A,B)) (Nonce Nb)|}
∈ set evs"

apply (erule rev_mp)
apply (erule sr.induct)
apply (simp_all (no_asm_simp))
apply (blast dest: Says_imp_knows_Spy [THEN parts.Inj]

Nb_certificate_authentic)
done

D. Proof Script Fragments for Zhou-Gollmann

D.1 Validity of Main Evidence

Below, we prove that if NRO exists, then A definitely sent it, provided A is
not broken.

Strong conclusion for a good agent.

lemma NRO_validity_good:
"[[NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};

NRO ∈ parts (spies evs);
A /∈ bad; evs ∈ zg]]

=⇒ Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done

lemma NRO_sender:
"[[Says A’ B {|n, b, l, C, Crypt (priK A) X|} ∈ set evs; evs ∈ zg]]

=⇒ A’ ∈ {A,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done

Holds also for A = Spy!

theorem NRO_validity:
"[[Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs;

NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
A /∈ broken; evs ∈ zg]]

=⇒ Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule NRO_sender, auto)

We are left with the case where the sender is Spy and not equal to A,
because A is uncompromised. Thus, Theorem NRO_validity_good applies.

apply (blast dest: NRO_validity_good [OF refl])
done

260 D. Proof Script Fragments for Zhou-Gollmann

Below, we prove that if NRR exists, then B definitely sent it, provided B
is not broken.

Strong conclusion for a good agent.

lemma NRR_validity_good:
"[[NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};

NRR ∈ parts (spies evs);
B /∈ bad; evs ∈ zg]]

=⇒ Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done

lemma NRR_sender:
"[[Says B’ A {|n, a, l, Crypt (priK B) X|} ∈ set evs; evs ∈ zg]]

=⇒ B’ ∈ {B,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done

Holds also for B = Spy!

theorem NRR_validity:
"[[Says B’ A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs;

NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
B /∈ broken; evs ∈ zg]]

=⇒ Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (frule NRR_sender, auto)

We are left with the case where B’ = Spy and B’ is not B, namely B is
uncompromised, when we can apply NRR_validity_good.

apply (blast dest: NRR_validity_good [OF refl])
done

D.2 Validity of Subsidiary Evidence

Below, we prove that if sub K exists, then A definitely sent it, provided A is
not broken.

Strong conclusion for a good agent.

lemma sub_K_validity_good:
"[[sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};

sub_K ∈ parts (spies evs);
A /∈ bad; evs ∈ zg]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
∈ set evs"

apply clarify

D.2 Validity of Subsidiary Evidence 261

apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake

apply (blast dest!: Fake_parts_sing_imp_Un)
done

lemma sub_K_sender:
"[[Says A’ TTP {|n, b, l, k, Crypt (priK A) X|} ∈ set evs; evs ∈ zg]]
=⇒ A’ ∈ {A,Spy}"

apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done

Holds also for A = Spy!

theorem sub_K_validity:
"[[Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs;

sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A /∈ broken; evs ∈ zg]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
∈ set evs"

apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule sub_K_sender, auto)

We are left with the case where the sender is Spy and not equal to A,
because A is uncompromised. Thus, Theorem sub_K_validity_good applies.

apply (blast dest: sub_K_validity_good [OF refl])
done

Below, we prove that if con K exists, then TTP has it, and therefore A
and B can get it too. Moreover, we know that A sent sub K.

lemma con_K_validity:
"[[con_K ∈ used evs;

con_K = Crypt (priK TTP)
{|Number f_con, Agent A, Agent B, Nonce L, Key K|};

evs ∈ zg]]
=⇒ Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}

∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake

apply (blast dest!: Fake_parts_sing_imp_Un)

ZG2

apply (blast dest: parts_cut)
done

262 D. Proof Script Fragments for Zhou-Gollmann

If TTP holds con K, then A sent sub K. We assume that A is not broken.
Importantly, nothing needs to be assumed about the form of con K!

lemma Notes_TTP_imp_Says_A:
"[[Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}

∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A /∈ broken; evs ∈ zg]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
∈ set evs"

apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

ZG4

apply clarify
apply (rule sub_K_validity, auto)
done

If con K exists, then A sent sub K. We again assume that A is not broken.

theorem B_sub_K_validity:
"[[con_K ∈ used evs;

con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|};

sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A /∈ broken; evs ∈ zg]]

=⇒ Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
∈ set evs"

by (blast dest: con_K_validity Notes_TTP_imp_Says_A)

D.3 Fairness

Cannot prove that, if B has NRO, then A has her NRR. It would appear
that B has a small advantage, though it is useless to win disputes: B needs
to present con K as well.

lemma A_unicity:
"[[NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};

NRO ∈ parts (spies evs);
Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M’, NRO’|}
∈ set evs;

A /∈ bad; evs ∈ zg]]
=⇒ M’=M"

apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)

ZG1: freshness

D.3 Fairness 263

apply (blast dest: parts.Body)
done

Fairness lemma: if sub K exists, then A holds NRR. Relies on unicity of
labels.

lemma sub_K_implies_NRR:
"[[NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};

NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
sub_K ∈ parts (spies evs);
NRO ∈ parts (spies evs);
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A /∈ bad; evs ∈ zg]]

=⇒ Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake

apply blast

ZG1: freshness

apply (blast dest: parts.Body)

ZG3

apply (blast dest: A_unicity [OF refl])
done

lemma Crypt_used_imp_L_used:
"[[Crypt (priK TTP) {|F, A, B, L, K|} ∈ used evs; evs ∈ zg]]
=⇒ L ∈ used evs"

apply (erule rev_mp)
apply (erule zg.induct, auto)

Fake

apply (blast dest!: Fake_parts_sing_imp_Un)

ZG2: freshness

apply (blast dest: parts.Body)
done

Fairness for A: if con K and NRO exist, then A holds NRR. A must be
uncompromised, but there is no assumption about B.

theorem A_fairness_NRO:
"[[con_K ∈ used evs;

NRO ∈ parts (spies evs);
con_K = Crypt (priK TTP)

{|Number f_con, Agent A, Agent B, Nonce L, Key K|};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};

264 D. Proof Script Fragments for Zhou-Gollmann

A /∈ bad; evs ∈ zg]]
=⇒ Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"

apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake

apply (simp add: parts_insert_knows_A)
apply (blast dest: Fake_parts_sing_imp_Un)

ZG1

apply (blast dest: Crypt_used_imp_L_used)

ZG2

apply (blast dest: parts_cut)

ZG4

apply (blast intro: sub_K_implies_NRR [OF refl]
dest: Gets_imp_knows_Spy [THEN parts.Inj])

done

Fairness for B: NRR exists at all, then B holds NRO. B must be uncom-
promised, but there is no assumption about A.

theorem B_fairness_NRR:
"[[NRR ∈ used evs;

NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
B /∈ bad; evs ∈ zg]]

=⇒ Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)

Fake

apply (blast dest!: Fake_parts_sing_imp_Un)

ZG2

apply (blast dest: parts_cut)
done

If con K exists at all, then B can get it, by con_K_validity. We cannot
conclude that also NRO is available to B, because if A were unfair, A could
build message 3 without building message 1, which contains NRO.

Bibliography

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999.

2. M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for
certified email. In R. Cousot, editor, Proc. of the 10th International Sym-
posium on Static Analysis (SAS’03), LNCS 2694, pages 316–335. Springer-
Verlag, 2003.

3. M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and
delegation with smart-cards. Research Report 125, Digital - Systems Research
Center, 1994.

4. M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email with a light
on-line trusted third party: Design and implementation. In Proc. of the 11th
International Conference on World Wide Web (WWW’02), pages 387–395.
ACM Press, 2002.

5. M. Abadi and A. Gordon. Reasoning about cryptographic protocols in the
spi calculus. In A. W. Mazurkiewicz and J. Winkowski, editors, Proc. of the
8th International Conference on Concurrency Theory (CONCUR’97), LNCS
1243, pages 59–73. Springer-Verlag, 1997.

6. M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi
calculus. Information and Computation, 148(1):1–70, 1999.

7. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996.

8. M. Abadi and M. Tuttle. A semantics for a logic of authentication. In
Proc. of the 10th ACM Symposium on Principles of Distributed Computing
(PODC’91), pages 201–216. ACM Press, 1991.

9. M. Abdalla, P. A. Fouque, and D. Pointcheval. Password-based authenti-
cated key exchange in the three-party setting. IEE Proceedings Information
Security, 153(1):27–39, 2006.

10. J. Alves-Foss. Multiprotocol attacks and the public key infrastructure. In
Proc. of the 21st National Information Systems Security Conference, pages
566–576, 1998.

11. N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan. An
analysis of SAT-based model checking techniques in an industrial environ-
ment. In D. Borrione and W. J. Paul, editors, Proc. of the 13th Conference
on Correct Hardware Design and Verification Methods (CHARME’05), LNCS
3725, pages 254–268. Springer-Verlag, 2005.

12. R. Anderson. Why cryptosystems fail. In Proc. of the 1st ACM Conference
on Communications and Computer Security (CCS’93), pages 217–227. ACM
Press, 1993.

13. R. Anderson and R. M. Needham. Programming Satan’s computer. In
J. Van Leeuwen, editor, Computer Science Today: Recent Trends and De-
velopments, LNCS 1000, pages 426–441. Springer-Verlag, 1995.

266 Bibliography

14. R. Anderson and R. M. Needham. Robustness principles for public key
protocols. In D. Coppersmith, editor, Proc. of Advances in Cryptography
(CRYPTO’95), LNCS 963, pages 236–247. Springer-Verlag, 1995.

15. R. J. Anderson and M. J. Kuhn. Low cost attacks on tamper resistant devices.
In B. Christianson, B. Crispo, T. M. A. Lomas, and M. Roe, editors, Proc. of
the 5th Security Protocols Workshop (SPW’97), LNCS 1361, pages 125–136.
Springer-Verlag, 1998.

16. A. Armando and L. Compagna. An optimized intruder model for SAT-based
model-checking of security protocols. In Proc. of the Workshop on Automated
Reasoning for Security Protocol Analysis (ARSPA’04), ENTCS 125, pages
91–108. Elsevier Science, 2005.

17. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. In Proc. of the 17th IEEE Symposium on Security and Privacy
(SSP’98), pages 86–99. IEEE Press, 1998.

18. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement
and friends. In Proc. of the 5th ACM Conference on Computer and Commu-
nication Security (CCS’98), pages 17–26. ACM Press, 1998.

19. M. Barjaktarovic, C. Shiu-Kai, J. Faust, C. Hosmer, D. Rosenthal, M. Still-
man, G. Hird, and D. Zhou. Analysis and implementation of secure electronic
mail protocols. In H. Orman and C. Meadows, editors, Proc. of the Workshop
on Design and Formal Verification of Security Protocols (DIMACS’97), 1997.

20. D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model-
checker for security protocols. International Journal of Information Security,
4(3):181–208, 2005.

21. D. A. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker
for security protocol analysis. In E. Snekkenes and D. Gollmann, editors,
Proc. of the 8th European Symposium on Research in Computer Security (ES-
ORICS’03), LNCS 2808, pages 253–270. Springer-Verlag, 2003.

22. G. Bella. Message reception in the inductive approach. Technical Report 460,
Computer Laboratory, University of Cambridge, 1999.

23. G. Bella. Inductive verification of cryptographic protocols. Ph.D. Thesis.
Technical Report 493, Cambridge University Computer Laboratory, 2000.

24. G. Bella. Modelling agents’ knowledge inductively. In B. Christianson,
B. Crispo, J. A. Malcolm, and R. Michael, editors, Proc. of the 7th Security
Protocols Workshop (SPW’99), LNCS 1796, pages 85–94. Springer-Verlag,
2000.

25. G. Bella. Lack of explicitness strikes back. In Proc. of the 8th Security
Protocols Workshop (SPW’00), LNCS 2133, pages 87–99. Springer-Verlag,
2001.

26. G. Bella. Mechanising a protocol for smartcards. In I. Attali and T. Jensen,
editors, Proc. of the 1st International Conference on Research in Smartcards
(e-Smart’01), LNCS 2140, pages 19–33. Springer-Verlag, 2001.

27. G. Bella. Availability of protocol goals. In B. Panda, editor, Proc. of the
18th ACM Symposium on Applied Computing (ACM SAC’03), pages 312–
317. ACM Press, 2003.

28. G. Bella. Inductive verification of smartcard protocols. Journal of Computer
Security, 11(1):87–132, 2003.

29. G. Bella and S. Bistarelli. Soft constraints for security protocol analysis:
Confidentiality. In I. V. Ramakrishnan, editor, Proc. of the 3rd International
Symposium on Practical Aspects of Declarative Languages (PADL’01), LNCS
1990, pages 108–122. Springer-Verlag, 2001.

30. G. Bella and S. Bistarelli. Soft constraint programming to analysing security
protocols. Theory and Practice of Logic Programming, 4(5):1–28, 2004.

Bibliography 267

31. G. Bella, S. Bistarelli, and S. N. Foley. Soft constraints for security. In M. ter
Beek and F. Gadducci, editors, Proc. of the 1st International Workshop on
Views On Designing Complex Architectures (VODCA’04), ENTCS 142, pages
11–29. Elsevier Science, 2004.

32. G. Bella, S. Bistarelli, and F. Massacci. A protocol’s life after attacks. In
Proc. of the 11th Security Protocols Workshop (SPW’03), LNCS 3364, pages
3–18. Springer-Verlag, 2005.

33. G. Bella, F. Blanqui, and L. C. Paulson. Local Repository of Protocol Proofs,
As from Isabelle 2006. Isabelle’s local subdirectory /src/HOL/Auth.

34. G. Bella, F. Blanqui, and L. C. Paulson. On-line Repository of Protocol
Proofs, As from Isabelle 2006.
http://isabelle.in.tum.de/library/HOL/Auth/index.html.

35. G. Bella, C. Longo, and L. C. Paulson. Verifying second-level security proto-
cols. In D. Basin and B. Wolff, editors, Proc. of the 16th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs’03), LNCS
2758, pages 352–366. Springer-Verlag, 2003.

36. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET registration
protocols. IEEE Journal of Selected Areas in Communications, 21(1):77–87,
2003.

37. G. Bella, F. Massacci, and L. C. Paulson. An overview of the verification of
SET. International Journal of Information Security, 4(1-2):17–28, 2005.

38. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase proto-
cols. Journal of Automated Reasoning, 36(1-2):5–37, 2006.

39. G. Bella and L. C. Paulson. Are timestamps worth the effort? A formal
treatment. Technical Report 447, Cambridge University Computer Labora-
tory, 1998.

40. G. Bella and L. C. Paulson. Kerberos Version IV: Inductive analysis of the se-
crecy goals. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann,
editors, Proc. of the 5th European Symposium on Research in Computer Se-
curity (ESORICS’98), LNCS 1485, pages 361–375. Springer-Verlag, 1998.

41. G. Bella and L. C. Paulson. Mechanising BAN Kerberos by the Inductive
Method. In A. J. Hu and M. Y. Vardi, editors, Proc. of the International
Conference on Computer-Aided Verification (CAV’98), LNCS 1427, pages
416–427. Springer-Verlag, 1998.

42. G. Bella and L. C. Paulson. Mechanical proofs about a non-repudiaton proto-
col. In R. J. Boulton and P. B. Jackson, editors, Proc. of the 14th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’01), LNCS
2152, pages 91–104. Springer-Verlag, 2001.

43. G. Bella and L. C. Paulson. Analyzing delegation properties. In B. Christian-
son, B. Crispo, W. S. Harbison, and M. Roe, editors, Proc. of the 10th Security
Protocols Workshop (SPW’02), LNCS 2845, pages 120–127. Springer-Verlag,
2004.

44. G. Bella and L. C. Paulson. Accountability protocols: Formalized and verified.
ACM Transactions on Information and System Security, 9(2):1–24, 2006.

45. G. Bella and E. Riccobene. Formal analysis of the Kerberos authentication
system. Journal of Universal Computer Science, 3(12):1337–1381, 1997.

46. G. Bella and E. Riccobene. A realistic environment for crypto-protocol anal-
yses by ASMs. In U. Glässer, editor, Proc. of the 5th International Workshop
on Abstract State Machines (Informatik’98), pages 127–138, 1998.

47. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
D. R. Stinson, editor, Proc. of Advances in Cryptography (CRYPTO’93),
LNCS 773, pages 232–249. Springer-Verlag, 1993.

268 Bibliography

48. M. Bellare and P. Rogaway. Provably secure session key distribution — the
three party case. In Proc. of the 27th ACM SIGACT Symposium on Theory
of Computing (STOC’95), pages 57–66. ACM Press, 1995.

49. S. Bistarelli. Semirings for Soft Constraint Solving and Programming. LNCS
2962. Springer-Verlag, 2004.

50. S. Bistarelli and S. N. Foley. A constraint framework for the qualitative
analysis of dependability goals: Integrity. In S. Anderson, M. Felici, and
B. Littlewood, editors, Proc. of the 22nd International Conference on Com-
puter Safety, Reliability and Security (SAFECOMP’03), LNCS 2788, pages
130–143. Springer-Verlag, 2003.

51. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In Proc. of the 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pages 82–96. IEEE Press, 1998.

52. A. Bleeker and L. Meertens. A semantics for BAN logic. In H. Orman and
C. Meadows, editors, Proc. of the Workshop on Design and Formal Verifica-
tion of Security Protocols (DIMACS’97), 1997.

53. E. Börger. Annotated bibliography on Evolving Algebras. In E. Börger,
editor, Specification and Validation Methods, pages 37–52. Oxford University
Press, 1995.

54. E. Börger and L. Mearelli. Integrating ASMs into the software development
life cycle. Journal of Universal Computer Science, 3(5):603–665, 1997.

55. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establish-
ment. Information Security and Cryptography Series. Springer-Verlag, 2003.

56. S. Brackin. A HOL extension of GNY for automatically cryptographic pro-
tocols. In Proc. of the 9th IEEE Computer Security Foundations Workshop
(CSFW’96), pages 62–76. IEEE Press, 1996.

57. S. H. Brackin. Automatic formal analyses of two large commercial protocols.
In H. Orman and C. Meadows, editors, Proc. of the Workshop on Design and
Formal Verification of Security Protocols (DIMACS’97), 1997.

58. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. Proc.
of the Royal Society of London, 426:233–271, 1989.

59. C. Caleiro, L. Viganò, and D. Basin. Relating strand spaces and distributed
temporal logic for security protocol analysis. Logic Journal of the Interest
Group in Pure and Applied Logics, 13(6):637–663, 2005.

60. I. Cervesato, C. Meadows, and D. Pavlovic. An encapsulated authentication
logic for reasoning about key distribution protocols. In Proc. of the 18th
IEEE Computer Security Foundations Workshop (CSFW’05), pages 48–61.
IEEE Press, 2005.

61. J. Clark and J. Jacob. A survey of authentication protocol literature: Version
1.0. Technical report, University of York, Department of Computer Science,
November 1997. http://www-users.cs.york.ac.uk/~jac/.

62. E. M. Clarke, S. Jha, and W. Marrero. Using state space exploration and
a natural deduction style message derivation engine to verify security proto-
cols. In D. Gries and W. P. De Roever, editors, Proc. of the IFIP Working
Conference on Programming Concepts and Methods (PROCOMET’98), pages
87–106. Chapman & Hall, 1998.

63. E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Bru-
tus. ACM Transactions on Software Engineering and Methodology, 9(4):443–
487, 2000.

64. E. Cohen. First-order verification of cryptographic protocols. Journal of
Computer Security, 11(2):186–216, 2003.

65. R. Corin and S. Etalle. An improved constraint-based system for the verifi-
cation of security protocols. In M. V. Hermenegildo and G. Puebla, editors,

Bibliography 269

Proc. of the 9th International Symposium on Static Analysis (SAS’02), LNCS
2477, pages 326–341. Springer-Verlag, 2002.

66. C. J. F. Cremers. Feasibility of multi-protocol attacks. In Proc. of the First
International Conference on Availability, Reliability and Security (ARES’06),
pages 287–294. IEEE Press, 2006.

67. B. Crispo. Delegation protocols for electronic commerce. In Proc. of the
6th Symposium on Computers and Communications (ISCC’01). IEEE Press,
2001.

68. Z. Dang and R. A. Kemmerer. Using the astral model checker for crypto-
graphic protocol analysis. In H. Orman and C. Meadows, editors, Proc. of
the Workshop on Design and Formal Verification of Security Protocols (DI-
MACS’97), 1997.

69. A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system for
security protocols and its logical formalization. In Proc. of the 16th IEEE
Computer Security Foundations Workshop (CSFW’03), pages 109–125. IEEE
Press, 2003.

70. R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. Practical protocols for cer-
tified electronic mail. Journal of Network and System Management, 4(3):279–
297, 1996.

71. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols.
Communications of the ACM, 24(8):533–536, 1981.

72. T. Dierks and C. Allen. The TLS Protocol. Internet Request for Comment
RFC-2246, January 1999.

73. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22:644–654, 1976.

74. D. L. Dill. Murphi Description Language and Verifier, 1996.
http://verify.stanford.edu/dill/murphi.html.

75. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Trans-
actions on Information Theory, 2(29):198–208, 1983.

76. N. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and
the complexity of bounded security protocols. Journal of Computer Security,
12(2):247–311, 2004.

77. F. J. T. Fábrega and J. D. Guttman. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, 2002.

78. F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces. Research
Report 67, The MITRE Corporation, 1997.

79. F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7:191–220, 1999.

80. A. Gargantini and E. Riccobene. Encoding abstract state machines in PVS.
In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Proc. of the Ab-
stract State Machines 2000 Workshop, LNCS 1912, pages 303–322. Springer-
Verlag, 2000.

81. D. Gollmann. What do we mean by entity authentication? In Proc. of the
15th IEEE Symposium on Security and Privacy (SSP’96), pages 46–54. IEEE
Press, 1996.

82. L. Gong, R. M. Needham, and R. Yahalom. Reasoning about belief in cryp-
tographic protocols. In Proc. of the 9th IEEE Symposium on Security and
Privacy (SSP’90), pages 234–248. IEEE Press, 1990.

83. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451–520, 2003.

84. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for commu-
nication protocols. Theoretical Computer Science, 300(1-3):379–409, 2003.

270 Bibliography

85. M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, 1993.

86. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
1995.

87. S. Gürgens and C. Rudolph. Security analysis of (un-) fair non-repudiation
protocols. In A. Abdallah, P. Y. A. Ryan, and S. Schneider, editors, Proc. of
the 1st International Conference of Formal Aspects of Security (FASec’02),
LNCS 2629, pages 97–114. Springer-Verlag, 2003.

88. J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T. Sniffen. Programming
cryptographic protocols. In R. De Nicola and D. Sangiorgi, editors, Proc. of
the International Workshop on Trustworthy Global Computing, LNCS 3705,
pages 116–145. Springer-Verlag, 2005.

89. J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C. Herzog, J. D. Ramsdell,
and B. T. Sniffen. Trust management in strand spaces: A rely-guarantee
method. In D. Schmidt, editor, Proc. of the 13th European Symposium on
Programming (ESOP’04), LNCS 2986, pages 325–339. Springer-Verlag, 2004.

90. J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

91. J. C. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space
model. In Proc. of the 16th IEEE Computer Security Foundations Workshop
(CSFW’03), pages 234–247. IEEE Press, 2003.

92. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
93. ISO-7498-2. Information Processing Systems — Open Systems Interconnec-

tion — Basic Reference Model – Part 2: Security Architecture. International
Organization for Standardization, 1989.

94. ISO-8825. Information Processing Systems — Open Systems Interconnection
— Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1). International Organization for Standardization, 1987.

95. N. Itoi and P. Honeyman. Smartcard integration with Kerberos V5. In Proc.
of the USENIX Workshop on Smartcard Technology, 1999.

96. R. Jerdonek, P. Honeyman, K. Coffman, J. Rees, and K. Wheeler. Imple-
mentation of a provably secure, smartcard-based key distribution protocol.
In J.-J. Quisquater and B. Schneier, editors, Proc. of the 3rd Smartcard Re-
search and Advanced Application Conference (CARDIS’98), pages 229–235,
1998.

97. D. Kahn. The Codebreakers. Macmillan, 1967.
98. S. Katzenbeisser and F. A. P. Petitcolas, editors. Information Hiding Tech-

niques for Steganography and Digital Watermarking. Artech House, 2000.
99. R. Kemmerer, C. A. Meadows, and J. Millen. Three systems for cryptographic

protocol analyses. Journal of Cryptology, 7(2):79–130, 1994.
100. R. Khamsi. Mathematical proofs getting harder to verify. NewScientist, 19

February 2006. http://www.newscientist.com/article.ns?id=
dn8743&feedId=online-news rss20.

101. J. Kohl and B. Neuman. The Kerberos Network Authentication Service (Ver-
sion 5). Internet Request for Comment RFC-1510, September 1993.

102. J. Kohl, B. Neuman, and T. Ts’o. The evolution of the Kerberos authentica-
tion system. In Distributed Open System, pages 78–94. IEEE Press, 1994.

103. O. Kömmerling and M. G. Kuhn. Design principles for tamper-resistant
smartcard processors. In Proc. of the USENIX Workshop on Smartcard Tech-
nology, pages 9–20, 1999.

Bibliography 271

104. T. Leighton and S. Micali. Secret-key agreement without public-key cryp-
tography. In D. R. Stinson, editor, Proc. of Advances in Cryptography
(CRYPTO’93), LNCS 773, pages 456–479. Springer-Verlag, 1993.

105. H. Lipmaa. Idea: A cipher for multimedia architectures? In S. Tavares and
H. Meijer, editors, Proc. of the 5th Workshop on Selected Areas in Cryptog-
raphy (SAC ’98), LNCS 1556, pages 248–263. Springer-Verlag, 1998.

106. G. Lowe. An attack on the Needham-Schroeder public-key authentication
protocol. Information Processing Letters, 56(3):131–133, 1995.

107. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using CSP and FDR. In T. Margaria and B. Steffen, editors, Proc of the
2nd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’96), LNCS 1055, pages 147–166. Springer-
Verlag, 1996.

108. G. Lowe. Some new attacks upon security protocols. In Proc. of the 9th IEEE
Computer Security Foundations Workshop (CSFW’96). IEEE Press, 1996.

109. G. Lowe. A hierarchy of authentication specifications. In Proc. of the 10th
IEEE Computer Security Foundations Workshop (CSFW’97), pages 31–43.
IEEE Press, 1997.

110. G. Lowe. Casper: A compiler for the analysis of security protocols. Journal
of Computer Security, 6(1-2):53–84, 1998.

111. G. Lowe. Towards a completeness result for model checking of security pro-
tocols. In Proc. of the 11th IEEE Computer Security Foundations Workshop
(CSFW’98), pages 96–105. IEEE Press, 1998.

112. G. Lowe and A. W. Roscoe. Using CSP to detect errors in the TMN protocol.
IEEE Transactions on Software Engineering, 3(10):659–669, 1997.

113. D. P. Maher. Fault induction attacks, tamper resistance, and hostile reverse
engineering in perspective. In R. Hirschfeld, editor, Proc. of Financial Cryp-
tography ’97, LNCS 1318, pages 109–121. Springer-Verlag, 1997.

114. A. Mahimkar and V. Shmatikov. Game-based analysis of denial-of-service
prevention protocols. In Proc. of the 18th IEEE Computer Security Founda-
tions Workshop (CSFW’05), pages 287–301. IEEE Press, 2005.

115. W. Mao and C. Boyd. Towards formal analysis of security protocols. In Proc.
of the 6th IEEE Computer Security Foundations Workshop (CSFW’93), pages
147–158. IEEE Press, 1993.

116. K. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.
117. C. A. Meadows. Formal verification of cryptographic protocols: A survey. In

Advances in Cryptology (Asiacrypt 94), LNCS 917, pages 133–150. Springer-
Verlag, 1995.

118. C. A. Meadows. The NRL protocol analyzer: An overview. Journal of Logic
Programming, 26(2):113–131, 1996.

119. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

120. J. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. of the 8th ACM Conference on Computer
and Communication Security (CCS’01), pages 166–175. ACM Press, 2001.

121. S. P. Miller, J. I. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos authenti-
cation and authorisation system. Technical Plan Sec. E.2.1, MIT — Project
Athena, 1989.

122. R. Milner. Communicating and Mobile Systems: the Π-Calculus. Cambridge
University Press, 1999.

123. J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-
graphic protocols using Murphi. In Proc. of the 16th IEEE Symposium on
Security and Privacy (SSP’97). IEEE Press, 1997.

272 Bibliography

124. B. Monahan. Introducing ASPECT — a tool for checking proto-
col security. Research Report 246, HP Laboratories Bristol, 2002.
http://www.hpl.hp.co.uk/techreports/2002/HPL-2002-246.pdf.

125. National Bureau of Standards. Data Encryption Standard, January 1977.
Federal Information Processing Standards Publications, FIPS Pub. 46.

126. R. M. Needham and M. D. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999,
1978.

127. A. Nenadic̀, N. Zhang, and Q. Shi. RSA-based verifiable and recoverable en-
cryption of signatures and its application in certified e-mail delivery. Journal
of Computer Security, 13(5):757–777, 2005.

128. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

129. H. Orman. The OAKLEY Key Determination Protocol. Internet Request for
Comment RFC-2412, November 1998.

130. L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer-
Verlag, 1994.

131. L. C. Paulson. Mechanized proofs for a recursive authentication proto-
col. In Proc. of the 10th IEEE Computer Security Foundations Workshop
(CSFW’97), pages 84–95. IEEE Press, 1997.

132. L. C. Paulson. Proving properties of security protocols by induction. In Proc.
of the 10th IEEE Computer Security Foundations Workshop (CSFW’97),
pages 70–83. IEEE Press, 1997.

133. L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

134. L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans-
actions on Computer and System Security, 2(3):332–351, 1999.

135. L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom
protocol. Journal of Computer Security, 9(3):197–216, 2001.

136. A. Perrig. Efficient collaborative key management protocols for secure au-
tonomous group communication. In M. Blum and C. H. Lee, editors, Proc.
of the International Workshop on Cryptographic Techniques & E-Commerce
(CrypTEC’99), pages 192–202. City University of Hong Kong, 1999.

137. R. Rivest. Chaffing and winnowing: Confidentiality without encryp-
tion. CryptoBytes Technical Newsletter, RSA Laboratories, 4(1):12–17, 1998.
http://theory.lcs.mit.edu/~rivest/chaffing.txt.

138. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1976.

139. A. W. Roscoe. Model-checking CSP. In A. W. Roscoe, editor, A Classical
Mind, Essays in Honour of C. A. R. Hoare, pages 353–378. Prentice-Hall,
1994.

140. D. Rosenzweig, D. Runje, and N. Slani. Privacy, abstract encryption and
protocols: an ASM model — part I. In E. Börger, A. Gargantini, and E. Ric-
cobene, editors, Proc. of the Abstract State Machines 2003 Workshop, LNCS
2589, pages 372–390. Springer-Verlag, 2003.

141. P. Y. A. Ryan. Modelling and analysis of security protocols. Research pro-
posal, Defence Research Agency, 1994.

142. P. Y. A. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. W. Roscoe.
Modelling and Analysis of Security Protocols. Addison-Wesley, 2001.

143. P. Y. A. Ryan and S. A. Schneider. An attack on a recursive authentication
protocol: A cautionary tale. In Information Processing Letters 65. Elsevier
Science, 1998.

Bibliography 273

144. S. Schneider. Verifying authentication protocols with CSP. In Proc. of the
10th IEEE Computer Security Foundations Workshop (CSFW’97), pages 3–
17. IEEE Press, 1997.

145. S. Schneider. Formal analysis of a non-repudiation protocol. In Proc. of
the 11th IEEE Computer Security Foundations Workshop (CSFW’98), pages
54–65. IEEE Press, 1998.

146. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, 1994.

147. V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing
protocols. Theoretical Computer Science, 283(2):419–450, 2002.

148. V. Shoup and A. Rubin. Session key distribution using smartcards. In U. Mau-
rer, editor, Advances in Cryptology (Eurocrypt’96), LNCS 1070, pages 321–
331. Springer-Verlag, 1996.

149. P. Smith. LUC public-key encryption. Dr. Dobb’s Journal, 18(1):44–49, 90–
92, January 1993.

150. D. R. Stinson. Cryptography Theory and Practice. CRC Press, 1995.
151. P. Syverson. A taxonomy of replay attacks. In Proc. of the 7th IEEE

Computer Security Foundations Workshop (CSFW’94), pages 187–191. IEEE
Press, 1994.

152. P. F. Syverson. Limitations on design principles for public key protocols. In
Proc. of the 15th IEEE Symposium on Security and Privacy (SSP’96), pages
62–72. IEEE Press, 1996.

153. M. Tatebayashi, N. Matsuzaki, and D. B. J. Neuman. Key distribution
protocol for digital mobile communication systems. In G. Brassard, editor,
Proc. of Advances in Cryptography (CRYPTO’89), LNCS 435, pages 324–334.
Springer-Verlag, 1990.

154. URL. AsmL: the Abstract State Machine Language.
http://research.microsoft.com/fse/asml/.

155. URL. Cygwin: a Linux-like environment for Windows.
http://www.cygwin.com.

156. URL. Isabelle development snapshot.
http://isabelle.in.tum.de/devel/.

157. URL. Isabelle download page.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download.html.

158. URL. Old Isabelle releases.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download past.html.

159. URL. Poly/ML: a full implementation of Standard ML.
http://www.polyml.org.

160. URL. Proof General: a generic interface for proof assistants.
http://proofgeneral.inf.ed.ac.uk.

161. URL. Standard ML of New Jersey.
http://www.smlnj.org.

162. VISA International. Global Smart Card Growth Continues as Visa Surpasses
40 Million Mark, 2001.
http://usa.visa.com/about visa/newsroom/press releases/nr98.html.

163. VISA International. 3-D Secure Introduction, 2006.
http://partnernetwork.visa.com/pf/3dsec/.

164. M. Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Proc. of the 12th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’99), LNCS 1690, pages 167–184.
Springer-Verlag, 2001.

274 Bibliography

165. K. Winter. Towards a methodology for model checking ASM: Lessons learned
from the FLASH case study. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele, editors, Proc. of the Abstract State Machines 2000 Workshop, LNCS
1912, pages 341–360. Springer-Verlag, 2000.

166. T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. Com-
puter, 25(1):39–52, 1992.

167. T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols.
In Proc. of the 12th IEEE Symposium on Security and Privacy (SSP’93),
pages 178–194. IEEE Press, 1993.

168. G. Zhou and D. Gollmann. Towards verification of non-repudiation protocols.
In J. Grundy, M. Schwenke, and T. Vickers, editors, Proc. of the International
Refinement Workshop and Formal Methods Pacific, pages 370–380. Springer-
Verlag, 1998.

169. J. Zhou. Non-repudiation in Electronic Commerce. Artech House, 2001.
170. J. Zhou, R. H. Deng, and F. Bao. Evolution of fair non-repudiation with

TTP. In Proc. of the 4th Australasian Conference on Information Security
and Privacy, LNCS 1587, pages 258–269. Springer-Verlag, 1998.

171. J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proc. of the
15th IEEE Symposium on Security and Privacy (SSP’96), pages 55–61. IEEE
Press, 1996.

